Answer:

Explanation:
Hello.
In this case, since the acid is monoprotic and the KOH has one hydroxyl ion only, we can see that at the equivalence point the moles of both of them are the same:

Thus, since we are given 1.70 g of the acid, we compute the moles of acid that were titrated:

Which equal the moles of KOH. In such a way, since the molarity is defined as moles over liters (M=n/V), the liters are moles over molarity (V=n/M), thus, the resulting volume is:

Best regards!
That would be the first option Ca(OH)2 + H2SO4 → CaSO4 + 2H2O.
The Ca replaces the H2 in H2SO4, and the H2 replaces the Ca is Ca(OH)2.
The products will be magnesium phosphate and potassium chloride. You then have to watch a solubility chart to see which one of these is not soluable. In this case it is magnesium phosphate.
1.062 mol/kg.
<em>Step 1</em>. Write the balanced equation for the neutralization.
MM = 204.22 40.00
KHC8H4O4 + NaOH → KNaC8H4O4 + H2O
<em>Step 2</em>. Calculate the moles of potassium hydrogen phthalate (KHP)
Moles of KHP = 824 mg KHP × (1 mmol KHP/204.22 mg KHP)
= 4.035 mmol KHP
<em>Step 3</em>. Calculate the moles of NaOH
Moles of NaOH = 4.035 mmol KHP × (1 mmol NaOH/(1 mmol KHP)
= 4.035 mmol NaOH
<em>Step 4</em>. Calculate the mass of the NaOH
Mass of NaOH = 4.035 mmol NaOH × (40.00 mg NaOH/1 mmol NaOH)
= 161 mg NaOH
<em>Step 5</em>. Calculate the mass of the water
Mass of water = mass of solution – mass of NaOH = 38.134 g - 0.161 g
= 37.973 g
<em>Step 6</em>. Calculate the molal concentration of the NaOH
<em>b</em> = moles of NaOH/kg of water = 0.040 35 mol/0.037 973 kg = 1.062 mol/kg