Answer: 430 nm.
Explanation:
The relation of wavelength and frequency is:
Formula used :
where,
= frequency =
= wavelength = ?
c = speed of light = 
Now put all the given values in this formula, we get

Thus the wavelength (in nm) of the blue light emitted by a mercury lamp is 430 nm.
Answer:
Its initial position was 471 m.
Explanation:
We have,
Final position of the object is 327 m
Displacement of the object is -144 m
It is required to find its initial position. The difference of final and initial position is equal to the displacement of the object. So,

So, its initial position was 471 m.
Answer:
If the acceleration is constant, the movements equations are:
a(t) = A.
for the velocity we can integrate over time:
v(t) = A*t + v0
where v0 is a constant of integration (the initial velocity), for the distance traveled between t = 0 units and t = 10 units, we can solve the integral:
Where to obtain the actual distance you can replace the constant acceleration A and the initial velocity v0.
Answer:
Aerobic Fitness. Aerobic fitness improves overall health and well-being. ...
Muscular Fitness. Strength training improves your muscle and bone health and helps with weight loss. ...
Flexibility. Flexibility allows you to move your body freely. ...
Stability and Balance
Explanation:
UP