Answer:
d. None of the above.
Explanation:
In a parabolic motion, you have that in the complete trajectory the component velocity is constant and the vertical component changes in time. Then, the total velocity vector is not zero.
In the complete trajectory the gravitational acceleration is always present. Then, the grasshopper's acceleration vector is not zero.
At the top of the arc the grasshopper is not at equilibrium because the gravitational force is constantly acting on the grasshopper.
Then, the correct answer is:
d. None of the above.
Explanation:
For most temperature scales, the boiling point of water and the freezing point is used to calibrate it.
Three known temperature scales;
- Kelvin scale
- Celcius scale
- Fahrenheit scale
Kelvin scale Celcius scale Fahrenheit scale
Freezing point 273K 0°C 32°F
Melting point 373K 100°C 212°F
The most important measure is awhips
The answer to this question is going to be False
Answer:
1) t=1.743 sec
2)Vo=61.388 m/sec
3)the x component of its velocity just be- fore it strikes the ground is the same as the initial velocity of the ball that is=61.388 m/sec
4)Vf=17.08 m/s
Explanation:
1)From second equation of motion we get
h=Vit+(1/2)gt^2
here in case(a): Vi=0 m/s,h=14.9m,,put these values in above equation to find the time the ball is in motion
14.9=(0)*t+(1/2)(9.8)t^2
t^2=14.9/4.9
t^2=3.040 sec
t=1.743 sec
2) s=Vo*t
Putting values we get
107=Vo*1.743
Vo=61.388 m/sec
3)the x component of its velocity just be- fore it strikes the ground is the same as the initial velocity of the ball that is=61.388 m/sec
4)From third equation of motion we know that
Vf^2-Vi^2=2gh
here Vi=0 m/s,h=14.9 m
Vf^2=Vi^2+2gh=0+2(9.8)(14.9)
Vf^2=292.04
Vf=17.08 m/s