To the Earth in less than ten minutes.
Answer:
The mechanical energy is converted to potential energy while the kinetic energy is zero
Explanation:
mechanical energy is the sum of potential energy and kinetic energy. It is the energy associated with the motion and position of an object. The total mechanical energy is the sum of these two forms of energy.
The Law of Conservation of Energy: Energy cannot be created or destroyed, but is merely changed from one form into another. This means that potential energy can become kinetic energy, or vice versa, but energy cannot “disappear”.
The mechanical energy is converted to potential energy while the kinetic energy is zero
Answer:
Explanation:
Given
Maximum height H = 300m
Range (horizontal distance) = 380m
Required
Initial speed U and the angle of the ball when it was launched.
Range = U√2H/g
380 = U√2(300)/9.8
380 = U√600/9.8
380 = 7.8246U
U = 380/7.8246
U = 48.57m/s
The initial speed is 48.57m/s
b) Using the formula for calculating time of flight;
T = 2Usin theta/g
9 = 2(48.57)sin theta/9.8
9*9.8 = 97.14sin theta
88.2 = 97.14sin theta
88.2/97.14 = sin theta
sin theta = 0.9079
theta = sin^-1(0.9079)
theta = 65.23°
hence the angle when the ball was launched is 65.23°
Answer:
(a) 333.77 J
(b) 237.85 J
(c) 4763.77 J
(d) 4667.85 J
Explanation:
Temperature of source, TH = 314 K
Temperature of A, Tc = 292 K
Temperature of B, Tc' = 298 K
heat taken out, Qc = 4430 J
Let the heat deposited outside is QH and QH' by A and B respectively.

Now

(a) Work done for A
W = QH - QC = 4763.77 - 4430 = 333.77 J
(b) Work done for B
W' = QH' - Qc = 4667.85 - 4430 = 237.85 J
(c) QH = 4763.77 J
(d) QH' = 4667.85 J
Using F=m(v-u) /t
where f=ma
Ma = m(v-u)/t
a = (v-u) /t
a= (-0.4-0.6)/0.2
a= -1/0.2 = -5ms-² (it's decelerating)