a) we can answer the first part of this by recognizing the player rises 0.76m, reaches the apex of motion, and then falls back to the ground we can ask how
long it takes to fall 0.13 m from rest: dist = 1/2 gt^2 or t=sqrt[2d/g] t=0.175
s this is the time to fall from the top; it would take the same time to travel
upward the final 0.13 m, so the total time spent in the upper 0.15 m is 2x0.175
= 0.35s
b) there are a couple of ways of finding thetime it takes to travel the bottom 0.13m first way: we can use d=1/2gt^2 twice
to solve this problem the time it takes to fall the final 0.13 m is: time it
takes to fall 0.76 m - time it takes to fall 0.63 m t = sqrt[2d/g] = 0.399 s to
fall 0.76 m, and this equation yields it takes 0.359 s to fall 0.63 m, so it
takes 0.04 s to fall the final 0.13 m. The total time spent in the lower 0.13 m
is then twice this, or 0.08s
The answer is D. I hope this helps
Answer:
33,458.71 turns
Explanation:
Given: L = 37 cm = 0.37 m, B= 0.50 T, I = 4.4 A, n= number of turn per meter
μ₀ = Permeability of free space = 4 π × 10 ⁻⁷
Solution:
We have B = μ₀ × n × I
⇒ n = B/ (μ₀ × I)
n = 0.50 T / ( 4 π × 10 ⁻⁷ × 4.4 A)
n = 90,428.94 turn/m
No. of turn through 0.37 m long solenoid = 90,428.94 turn/m × 0.37
= 33,458.71 turns
For the part a) we need only the momentum of the box and we have the data to find it.
Momentum is given by,

where clearly, p is the momentum, m the mass of the box and v is the velocity.
Substituting,

For part b) we need an analysis of the situation. We understand that the box on a surface that has no friction will continue to rotate at the same speed previously defined. The box can only stop with friction, so,

<em>It is the same that part a)</em>