Answer:
1.97×10⁻²¹ J
Explanation:
Use ideal gas law to find temperature.
PV = nRT
(9 atm) (9 L) = (83.3 mol) (0.0821 L·atm/mol/K) T
T = 11.9 K
The average kinetic energy per atom is:
KE = 3/2 kT
KE = 3/2 (1.38×10⁻²³ J/K) (11.9 K)
KE = 2.46×10⁻²² J
For a mass of 5.34×10⁻²⁶ kg, the kinetic energy is:
KE = (5.34×10⁻²⁶ kg) (1 mol / 0.004 kg) (6.02×10²³ atom/mol) (2.46×10⁻²² J)
KE = 1.97×10⁻²¹ J
Electrons that are further away from the nucleus have more energy. As they enter an "excited" state, they jump up orbits.
Answer:
525 Bq
Explanation:
The decay rate is directly proportional to the amount of radioisotope, so we can use the half-life equation:
A = A₀ (½)^(t / T)
A is the final amount
A₀ is the initial amount,
t is the time,
T is the half life
A = (8400 Bq) (½)^(18.0 min / 4.50 min)
A = (8400 Bq) (½)^4
A = (8400 Bq) (1/16)
A = 525 Bq
The answer will be pressure.
Pressure is force per unit area.
Answer: Entropy is basically a thermodynamic quantity that tells the randomness of a system or as said in the question tells us a measure of the disorder of the system. The second law of thermodynamics states that a closed system has entropy which may remain constant