Initial velocity of the object: 5 m/s
Explanation:
The figure in the problem is missing: find it in attachment.
The graph in the figure represents the velocity of an object (v) versus the time passed (t).
Here we are asked to find the initial velocity of the object.
This means that we have to find the velocity of the object when the time is zero, so when
t = 0
By looking at the corresponding value on the y-axis (velocity), we see that when t = 0, then
v = 5 m/s
Therefore, the initial velocity of the object is 5 m/s.
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
Answer:
it will decrease
Explanation:
According to the law of universal gravitation, the gravitational force exerted by the moon on the spacecraft is equal to the product of their masses and inversely proportional to the square of the distance that separates them. Therefore, as the spacecraft moves away, its distance increases and the force of attraction exerted by the moon decreases.
Answer:
v=39.05 m/s
Explanation:
Given that
x= 56 cm
F= 158 N
m= 58 g = 0.058 kg
Lets take spring constant = k
At the initial position,before releasing the arrow
F= k x
By putting the values
F= k x
158= 0.56 k
k=282.14 N/m
Now from energy conservation
Lets take final speed of the arrow after releasing

k x²=mv²
282.14 x 0.56² = 0.058 v²
v=39.05 m/s
Gravitational potential energy = mass (kg) x gravitational field strength (N/kg) x height (m)
Therefore,
3 x 0.45 x 10 = 13.5J <- it's joules because it's energy