Answer:
The rate of consumption of
is 2.0 mol/L.s
Explanation:
Applying law of mass action to this reaction-
![-\frac{1}{4}\frac{\Delta [NH_{3}]}{\Delta t}=-\frac{1}{3}\frac{\Delta [O_{2}]}{\Delta t}=\frac{1}{2}\frac{\Delta [N_{2}]}{\Delta t}=\frac{1}{6}\frac{\Delta [H_{2}O]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B4%7D%5Cfrac%7B%5CDelta%20%5BNH_%7B3%7D%5D%7D%7B%5CDelta%20t%7D%3D-%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7B%5CDelta%20%5BO_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B%5CDelta%20%5BN_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D)
where
represents rate of consumption of
,
represents rate of consumption of
,
represents rate of formation of
and
represents rate of formation of
.
Here rate of formation of
is 3.0 mol/(L.s)
From the above equation we can write-
![-\frac{1}{4}\frac{\Delta [NH_{3}]}{\Delta t}=\frac{1}{6}\frac{\Delta [H_{2}O]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B4%7D%5Cfrac%7B%5CDelta%20%5BNH_%7B3%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D)
Here ![\frac{\Delta [H_{2}O]}{\Delta t}=3.0 mol/(L.s))](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D%3D3.0%20mol%2F%28L.s%29%29)
So, ![-\frac{\Delta [NH_{3}]}{\Delta t}=\frac{4}{6}\frac{\Delta [H_{2}O]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B%5CDelta%20%5BNH_%7B3%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B4%7D%7B6%7D%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D)
Hence,
Answer:
commensalism
(hope i spelled that right)
Explanation:
if the bird only nest in it and
the tree isn't really bothered or affected by the bird.
39.96 g product form when 16.7 g of calcium metal completely reacts.
<h3>What is the stoichiometric process?</h3>
Stoichiometry is a section of chemistry that involves using relationships between reactants and/or products in a chemical reaction to determine desired quantitative data.
Equation:
→ 
In this case, for the undergoing reaction, we can compute the grams of the formed calcium chloride by noticing the 1:1 molar ratio between calcium and it (stoichiometric coefficients) and using their molar mass of 40 g/mol and 111 g/mol by using the following stoichiometric process:
= 16.7 g Ca x
x
x 
= 39.96 g
Hence, 39.96 g product form when 16.7 g of calcium metal completely reacts.
Learn more about the stoichiometric process here:
brainly.com/question/15047541
#SPJ1
<span>MicroR Meter, with Sodium Iodide Detector
<span>Geiger Counter, with Geiger-Mueller (GM) Tube or Probe
<span>Portable Multichannel Analyzer</span>
</span>
</span>