Answer:
The amount of energy transferred to the water is 4.214 J
Explanation:
The given parameters are;
The mass of the object that drops = 5 kg
The height from which it drops = 86 mm (0.086 m)
The potential energy P.E. is given by the following formula
P.E = m·g·h
Where;
m = The mass of the object = 5 kg
g = The acceleration de to gravity = 9.8 m/s²
h = The height from which the object is dropped = 0.086 m
Therefore;
P.E. = 5 kg × 9.8 m/s² × 0.086 m = 4.214 J
Given that the potential energy is converted into heat energy, that raises the 1 g of water by 1°C, we have;
The amount of energy transferred to the water = The potential energy, P.E. = 4.214 J.
Answer:
a). Work transfer = 527.2 kJ
b). Heat Transfer = 197.7 kJ
Explanation:
Given:
= 5 Mpa
= 1623°C
= 1896 K
= 0.05
Also given
Therefore, = 1
R = 0.27 kJ / kg-K
= 0.8 kJ / kg-K
Also given :
Therefore, =
= 0.1182 MPa
a). Work transfer, δW =
= 527200 J
= 527.200 kJ
b). From 1st law of thermodynamics,
Heat transfer, δQ = ΔU+δW
=
=
=
= 197.7 kJ
Answer:
A vision statement describes what a company desires to achieve in the long-run, generally in a time frame of five to ten years, or sometimes even longer. It depicts a vision of what the company will look like in the future and sets a defined direction for the planning and execution of corporate-level strategies.
Explanation:
While companies should not be too ambitious in defining their long-term goals, it is critical to set a bigger and further target in a vision statement that communicates a company’s aspirations and motivates the audience. Below are the main elements of an effective vision statement:
-Forward-looking
-Motivating and inspirational
-Reflective of a company’s culture and core values
-Aimed at bringing benefits and improvements to the organization in the future
-Defines a company’s reason for existence and where it is heading
Answer:
Explanation:
Using the kinematics equation to determine the velocity of car B.
where;
initial velocity
= constant deceleration
Assuming the constant deceleration is = -12 ft/s^2
Also, the kinematic equation that relates to the distance with the time is:
Then:
The distance traveled by car B in the given time (t) is expressed as:
For car A, the needed time (t) to come to rest is:
Also, the distance traveled by car A in the given time (t) is expressed as:
Relating both velocities:
t = 2.25 s
At t = 2.25s, the required minimum distance can be estimated by equating both distances traveled by both cars
i.e.
d + 104.625 = 114.75
d = 114.75 - 104.625
d = 10.125 ft