Answer:
(a) ΔU = 7.2x10²
(b) W = -5.1x10²
(c) q = 5.2x10²
Explanation:
From the definition of power (p), we have:
(1)
<em>where, p: is power (J/s = W (watt)) W: is work = ΔU (J) and t: is time (s) </em>
(a) We can calculate the energy (ΔU) using equation (1):
(b) The work is related to pressure and volume by:

<em>where p: pressure and ΔV: change in volume = V final - V initial </em>
(c) By the definition of Energy, we can calculate q:
<em>where Δq: is the heat transfer </em>
I hope it helps you!
Answer:
It will float
Explanation:
Polystyrene is not dense and its light and full of air. It will float.
194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.
Explanation:
In order to convert the given number of molecules of BCl₃ to grams, first we have to convert the molecules to moles.
It is known that 1 moles of any element has 6.022×10²³ molecules.
Then 1 molecule will have
moles.
So 
Thus, 1.66 moles are included in BCl₃.
Then in order to convert it from moles to grams, we have to multiply it with the molecular mass of the compound.
As it is known as 1 mole contains molecular mass of the compound.
As the molecular mass of BCl₃ will be

Mass of boron is 10.811 g and the mass of chlorine is 35.453 g.
Molar mass of BCl₃ = 10.811+(3×35.453)=117.17 g.


So, 194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.
Answer:
6 moles of SO₃ formed.
Explanation:
Given data:
Number of moles of SO₃ formed = ?
Number of moles of oxygen react = 3 mol
Solution:
Chemical equation;
2SO₂+ O₂ → 2SO₃
now we will compare the moles of oxygen and sulfur trioxide.
O₂ : SO₃
1 : 2
3 : 2/1×3 = 6 moles
Thus, six moles of SO₃ will formed.
Answer: -
24 grams per kilogram.
Explanation: -
We know that
The mixing ratio = actual (measured) mass of water vapor (in parcel) in grams / mass of dry (non water vapor) air (in parcel) in kilogram
The saturation mixing ratio = mass of water vapor required for saturation (in parcel) in grams/ mass of dry (non water vapor) air (in parcel) in kilograms
Relative humidity = actual (measured) water vapor content/ maximum possible water vapor amount (saturation)
Thus saturation mixing ratio = Mixing ratio / relative humidity
= 6 / (25/100)
= 24