The molar<span> volume of an ideal gas is therefore 22.4 dm</span>3<span> at </span>stp<span>. And, of course, you could redo this calculation to find the volume of 1 mole of an ideal gas at room temperature and pressure - or any other temperature and pressure.</span>
Thick liquid lava
It's right
Answer:
It is a semi circle with a triangle on top
The gas molecules move between the system and the surroundings follow PV=nRT.
<h3>What are molecules?</h3>
The smallest particle of a substance has all of the physical and chemical properties of that substance.
An increase in pressure pushes the molecules closer together, reducing the volume. If the pressure is decreased, the gases are free to move about in a larger volume.
In the kinetic theory of gasses, increasing the temperature of a gas increases in average kinetic energy of the molecules, causing increased motion.
The reduction in the volume of the gas means that the molecules are striking the walls more often increasing the pressure, and conversely if the volume increases the distance the molecules must travel to strike the walls increases and they hit the walls less often thus decreasing the pressure.
At constant temperature and pressure the volume of a gas is directly proportional to the number of moles of gas. At constant temperature and volume the pressure of a gas is directly proportional to the number of moles of gas.
Learn more about molecules here:
brainly.com/question/14130817
#SPJ1