Answer:
The efficiency is never 100% because some energy will either escape through theromal lose or actualy been lost throughout the process of operation. Not 100% of any energy could be converted into moving anything.
Explanation:
Answer:
See the answers below
Explanation:
In this problem, we must be clear about the concept of weight. Weight is defined as the product of mass by gravitational acceleration.
We must be clear that the mass is always preserved, that is, the mass of 15 [kg] will always be the same regardless of the planet where they are.

where:
W = weight [N] (units of Newtons)
m = mass = 15 [kg]
g = gravity acceleration [m/s²]
Since we have 9 places with different gravitational acceleration, then we calculate the weight in each of these nine places.
<u>Mercury</u>
<u />
<u />
<u>Venus</u>
<u />
<u />
<u>Moon</u>
<u />
<u />
<u>Mars</u>
![w_{mars}=15*3.7\\w_{mars}=55.5 [N]](https://tex.z-dn.net/?f=w_%7Bmars%7D%3D15%2A3.7%5C%5Cw_%7Bmars%7D%3D55.5%20%5BN%5D)
<u>Jupiter</u>
<u />
<u />
<u>Saturn</u>
<u />
<u />
<u>Uranus</u>
<u />
<u />
<u>Neptune</u>
<u />
<u />
<u>Pluto</u>
<u />
<u />
Answer:
Frequency of oscillation, f = 4 Hz
time period, T = 0.25 s
Angular frequency, 
Given:
Time taken to make one oscillation, T = 0.25 s
Solution:
Frequency, f of oscillation is given as the reciprocal of time taken for one oscillation and is given by:
f = 
f = 
Frequency of oscillation, f = 4 Hz
The period of oscillation can be defined as the time taken by the suspended mass for completion of one oscillation.
Therefore, time period, T = 0.25 s
Angular frequency of oscillation is given by:


