Answer:
the two gliders collide, the mobile glider will transfer a bit of time to the fixed glider, which is why it comes out with a speed that is smaller than that of the bullet glider.
Explanation:
When the two gliders collide, the mobile glider will transfer a bit of time to the fixed glider, which is why it comes out with a speed that is smaller than that of the bullet glider.
Changes can occur that the gliders unite and move with a cosecant speed less than the initial one.
The whole process must be analyzed using conservation of the moment.
p₀ = m v₀
celestines que clash case
p_f = (m + M) v
po = pf
m v₀ = (n + M) v
v = 
calculemos
v= 
v= 0.09 m/s
elastic shock case
p₀ = m v₀
p_f = m v₁ +M v₂
p₀ = p_f
m v₀ = m v₁ + m v₂
Answer:
I just took the quiz and got 100% when choosing A.Conservation. Hope this helps:)
Answer:
If a crest formed by one wave interferes with a trough formed by the other wave then the rope will not move at all.
Explanation:
Assume a straight rope tied to both ends is at rest. When a wave is created at one end of the rope, it travels to the other end of the rope through formation of alternative crest and trough. Due to these crest and trough the rope shifts up and down.
But when there are two waves travelling through the rope and both have opposite direction (directed towards one another) in such a way that crest formed by one wave is interfering with the trough formed by the other wave then due to this interference the waves will cancel the effects of each other on the rope and rope will be stable.
Answer:

Explanation:
The ratio of pressure 2 to 1 us 5.48/1= 5.48 rounded off as 5.5.
Referring to table A.2 of modern compressible flow then 
Also
and making
the subject of the formula then
Making reference to
diagram then

Explanation:
Contact, vision, sound, flavor, and smell are all markers of energy transformations. The most basic example would be when we notice something has begun to pass through vision. Whenever an entity accelerates or slows down, energy is constantly transformed.