Answer: Option (A) is the correct answer.
Explanation:
In real gases, there exists force of attraction between the molecules at low temperature and high pressure. This is because at low temperature there occurs a decrease in kinetic energy of gas molecules and high pressure causes the molecules to come closer to each other.
As a result, forces of attraction increases as molecules come closer to each other and therefore, gases deviate from an ideal gas behavior.
And, at low pressure and high temperature there exists no force of attraction or repulsion between the molecules of a gas because they have high kinetic energy. Hence, gases behave ideally at these conditions.
Thus, we can conclude that the statement as the temperature approaches 0 K, the volume of the ideal gas will be larger than the volume of
because ideal gases lack inter-molecular forces, is true.
Answer:
i would say 10, so the anser is A.
Explanation:
because there are the same number of protons and electrons, therefore for a regular O, you are supposed to have only 8 protons, but it is charged, thus, whatever the charge is will be taken into consideration into how much the proton and electron doe it have. Thus, for this case, it has 10, because the charge is negative and you have 8 electron plus 2 = 10.
I think it would be these three answers ionic , covalent , and polar covalent
Reaction equation:
Al(OH)₃ + 3HCl → AlCl₃ + 3H₂O
Moles of Al(OH)₃:
moles = mass/Mr
= 1.51 / (27 + 17 x 3)
= 0.019
Molar ratio Al(OH)₃ : HCl = 1 : 3
Moles of HCl required = 0.019 x 3
=0.057
concentration = moles/volume
volume = 0.057 / 0.1
= 0.57 dm³
= 570 ml
He was working with electrons