<h3>
Answer: Choice A) 0-7</h3>
Explanation:
If the pH is between 0 and 7, then we have an acid.
If the pH is between 7 and 14, then we have an alkaline base.
If pH = 7, then it's neutral.
<u>Answer:</u> The molality of
solution is 0.782 m
<u>Explanation:</u>
Molality is defined as the amount of solute expressed in the number of moles present per kilogram of solvent. The units of molarity are mol/kg. The formula used to calculate molality:
.....(1)
Given values:
Moles of
= 0.395 mol
Mass of solvent (water) = 0.505 kg
Putting values in equation 1, we get:

Hence, the molality of
solution is 0.782 m
Answer:
The molecular equation for the reaction betweensodium carbonate and sulfuric acid is: 1. Na2CO3(aq)+H2SO4(aq)→Na2SO4(aq)+CO2(g)+H2O(l) N a 2 C O 3 ( a q ) + H 2 S O 4 ( a q ) → N a 2 S O 4 ( a q ) + C O 2 ( g ) + H 2 O ( l ) .
Explanation:
Answer: m= 3.15x10-3 g NaHCO3
Explanation: To find the mass of NaHCO3 we will use the relationship between moles and molar mass. The molar mass of NaHCO3 is 84 g.
3.75x10-5 moles NaHCO3 x 84 g NaHCO3 / 1 mole NaHCO3
= 3.15x10-3 g NaHCO3
Answer:
mass P4 = 35.998 g
Explanation:
∴ STP: P = 1 atm; T = 298 K
∴ V O2= 35.5 L
⇒ nO2 = P.V / R.T
∴ R = 0.082 atm.L/K.mol
⇒ nO2 = ((1 atm)×(35.5L))/((0.082 atm.L/K.mol)(298K))
⇒ nO2 = 1.453 mol O2
⇒ mol P4 = (1.453 molO2)×(mol P4/ 5molO2) = 0.2906 mol P4
∴ Mw P4 = 123.895 g/mol
⇒ mass P4 = (0.2906 mol P4)×(123.895 g/mol) = 35.998 g P4