Answer:
0.3758moles
Explanation:
moles of kcl = mass of kcl/ molar mass of kcl = 28/74.5 = 0.3758moles
Answer:
0.0017 Hz
Explanation:
the solution is in the photo
I believe that it most likely would be D.
Answer:
- There will be 1.23 moles of helium in the balloon at STP
Explanation:
1) <u>Initial conditions of the helium gas</u>:
- V = 20.0 liter
- p = 1.50 atm
- T = 25.0 °C = 25.0 + 273.15 K = 298.15 K
2) <u>Ideal gas equation</u>:
- pV = n RT
- p, V, and T are given above
- R is the Universal constant = 0.0821 atm-liter / ( K - mol)
- n is the unknown number of moles
3) <u>Solve for n</u>:
- n = 1.50 atm × 20.0 liter / (0.0821 atm-liter /k -mol ×298.15K)
4) <u>At STP:</u>
- STP stands for standard pressure and temperature.
- The amount (number of moles) of the gas will not change because the change of pressure and temperature, so the number of moles reamain the same: 1.23 mol.