Answer:
<h2>117.94 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>117.94 moles</h3>
Hope this helps you
Answer:
C. Arrhenius
An Arrhenius base is a substance that dissociates in water to form hydroxide (OH–) ions. In other words, a base increases the concentration of OH– ions in an aqueous solution.
Explanation:
pls mark as brainliest
Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
<h3>What is Balanced Chemical Equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactant side is equal to the number of atoms on the product side in an equation.
Now write the balanced chemical equation
H₂ + F₂ → 2HF
<h3>What is Ideal Gas ?</h3>
An ideal gas is a gas that obey gas laws at all temperature and pressure conditions. It have velocity and mass but do not have volume. Ideal gas is also called perfect gas. Ideal gas is a hypothetical gas.
It is expressed as:
PV = nRT
where,
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant
T = temperature
Here,
P = 1 atm [At STP]
V = 110 ml = 0.11 L
T = 273 K [At STP]
R = 0.0821 [Ideal gas constant]
Now put the values in above expression
PV = nRT
1 atm × 0.11 L = n × 0.0821 L.atm/ K. mol × 273 K

n = 0.0049 mol
<h3>How to find the concentration of resulting solution ? </h3>
To calculate the concentration of resulting solution use the expression

= 0.032 M
Thus from the above conclusion we can say that Suppose 110.0 mL of hydrogen gas at STP combines with a stoichiometric amount of fluorine gas and the resulting hydrogen fluoride dissolves in water to form 150.0 mL of an aqueous solution. 0.032 M is the concentration of the resulting hydrofluoric acid.
Learn more about the Ideal Gas here: brainly.com/question/25290815
#SPJ4
Answer:
Mine is doing good since I dont have any school today it makes it better. Im listening to scary stories on YT right now which always makes my day better so Im having a really good day today!
What about you? Why isn't your day doing so great?
Answer:
0.052mL
Explanation:
1mole of a gas occupy 22.4L.
Therefore, 1 mole of CO2 will also occupy 22.4L.
If 1mole of CO2 occupies 22.4L,
Then 2.3moles of CO2 will occupy = 2.3 x 22.4 = 51.52L
coverting this volume to mL, we simply divide by 1000 as shown below:
51.52/1000 = 0.05152mL = 0.052mL