The correct answer to the question is : D) Impulse
EXPLANATION:
Before going to answer this question, first we have to understand impulse.
Impulse of a body is defined as change in momentum or the product of force with time.
Mathematically impulse = F × t = m ( v - u ).
Here, v is the final velocity
u is the initial velocity
F is the force acting on the body for time t.
Hence, the perfect answer of this question is impulse m i.e the force multiplied with time is known as impulse.
FEMA stands for <span>Federal Emergency Management Agency</span>
Answer:
Part a)
Mass of m2 is given as

Part b)
Angular acceleration is given as

Part c)
Tension in the rope is given as

Explanation:
Part a)
When m1 and m2 both connected to the cylinder then the system is at rest
so we can use torque balance here




Part b)
When block m_2 is removed then system becomes unstable
so force equation of mass m1

also we have

now we have




so angular acceleration is given as



Part c)
Tension in the rope is given as



Answer:
The helicopter was 1103.63 meters high when the package was dropped.
Explanation:
We consider positive speed as a downward movement
y: height (m)
t: time (s)
v₀: initial speed (m/s)
Δy = v₀t +
gt²
Δy= 15
×15 s +
×9.81
×(15 s)²
Δy= 1103.63 m
m = mass of the person = 82 kg
g = acceleration due to gravity acting on the person = 9.8 m/s²
F = normal force by the surface on the person
f = kinetic frictional force acting on the person by the surface
μ = Coefficient of kinetic friction = 0.45
The normal force by the surface in upward direction balances the weight of the person in down direction , hence
F = mg eq-1
kinetic frictional force on the person acting is given as
f = μ F
using eq-1
f = μ mg
inserting the values
f = (0.45) (82) (9.8)
f = 361.6 N