Answer:
See explanation for detailed solution
Explanation:
The balanced reaction equation is Ba(NO3)2 + 2HSO3NH2 → Ba(SO3NH2)2 + 2HNO3
Number of moles of Ba(NO3)2 = 1.4 g/ 261.337 g/mol = 5.36 × 10^-3 moles
From the reaction equation;
1 mole of Ba(NO3)2 yields 1 mole of Ba(SO3NH2)2
5.36 × 10^-3 moles of Ba(NO3)2 yields 5.36 × 10^-3 moles of Ba(SO3NH2)2
For HSO3NH2
Number of moles = 2.4g/97.10 g/mol =0.0247 moles
2 moles of HSO3NH2 yields 1 mole of Ba(SO3NH2)2
0.0247 moles of HSO3NH2 yields 0.0247 ×1/2 = 0.0137 moles
Hence, Ba(NO3)2 is the limiting reactant
The theoretical yield of Ba(SO3NH2)2 is 5.36 × 10^-3 moles × 329.4986 g/mol = 1.766 g
b)
Number of moles = mass/ molar mass
Molar mass = mass/ number of moles
Molar mass = 1.6925 g/5.36 × 10^-3 moles = 315.76 g
<span>The constant bombardment of gas molecules against the inside walls of a container produces Pressure.
Explanation:
Pressure is defined as Force per unit Area.
P = F / A
In case of gases, the gas molecules have high Kinetic Energy and they move with high velocity. This cause them to strike against the inside wall of the container. Pressure is directly proportional to temperature. Increase in temperature cause to increase the Kinetic Energy of molecules, Hence, the rate of collisions increases resulting in increasing the pressure.</span>
<h3>
Answer:</h3>
2.809 L of H₂SO₄
<h3>
Explanation:</h3>
Concept tested: Moles and Molarity
In this case we are give;
Mass of solid sodium hydroxide as 13.20 g
Molarity of H₂SO₄ as 0.235 M
We are required to determine the volume of H₂SO₄ required
<h3>First: We need to write the balanced equation for the reaction.</h3>
- The reaction between NaOH and H₂SO₄ is a neutralization reaction.
- The balanced equation for the reaction is;
2NaOH + H₂SO₄ → Na₂SO₄ + 2H₂O
<h3>Second: We calculate the umber of moles of NaOH used </h3>
- Number of moles = Mass ÷ Molar mass
- Molar mass of NaOH is 40.0 g/mol
Moles of NaOH = 13.20 g ÷ 40.0 g/mol
= 0.33 moles
<h3>Third: Determine the number of moles of the acid, H₂SO₄</h3>
- From the equation, 2 moles of NaOH reacts with 1 mole of H₂SO₄
- Therefore, the mole ratio of NaOH: H₂SO₄ is 2 : 1.
- Thus, Moles of H₂SO₄ = moles of NaOH × 2
= 0.33 moles × 2
= 0.66 moles of H₂SO₄
<h3>Fourth: Determine the Volume of the acid, H₂SO₄ used</h3>
- When given the molarity of an acid and the number of moles we can calculate the volume of the acid.
- That is; Volume = Number of moles ÷ Molarity
In this case;
Volume of the acid = 0.66 moles ÷ 0.235 M
= 2.809 L
Therefore, the volume of the acid required to neutralize the base,NaOH is 2.809 L.
We need the reading for this I think
I think its the first 1 C i remember answering this question on my school work