Answer:
The person has no displacement
Explanation:
The given parameters are
The location of the person = The equator
The distance covered in one revolution = Total distance around the body
The total distance around the Earth = The circumference of the Earth = 40.075 kilometres
The total distance moved by the person standing at the equator during the Earths complete revolution = 40,075 kilometres
The initial location of the person in relation to a fixed point in space outside Earth at the start of the revolution = x km
The final location of the person in relation to the fixed point in space outside Earth at the completion of the revolution = x km
The displacement = Change in position = Final location - Initial location
∴ The displacement = x km - x km = 0 km.
Answer:
A. F=107.6nN
B. Repulsive
Explanation:
According to coulombs law, the force between two charges is express as
F=(Kq1q2) /r^2
If the charges are of similar charge the force will be repulsive and if they are dislike charges, force will be attractive.
Note the constant K has a value 9*10^9
Hence for a charge q1=7.10nC=7.10*10^-9, q2=4.42*10^-9 and the distance r=1.62m
If we substitute values we have
F=[(9×10^9) ×(7.10×10^-9) ×(4.42×10^-9)] /(1.62^2)
F=(282.4×10^-9)/2.6244
F=107.6×10^-9N
F=107.6nN
B. Since the charges are both positive, the force is repulsive
Answer:
The maximum emf that can be generated around the perimeter of a cell in this field is 
Explanation:
To solve this problem it is necessary to apply the concepts on maximum electromotive force.
For definition we know that

Where,
N= Number of turns of the coil
B = Magnetic field
Angular velocity
A = Cross-sectional Area
Angular velocity according kinematics equations is:



Replacing at the equation our values given we have that




Therefore the maximum emf that can be generated around the perimeter of a cell in this field is 
The answer is false. The speed of the astronaut cancels out the force of gravity, causing a 'stationary freefall'. While under these effects, it is not required for an astronaut to 'strengthen' his body.