Answer:
1 eV = 1.60 * 10^-19 J work done in accelerating electron thru 1 V
KE (total energy) = 1350 ^ 1 eV (note proton goes from + to -)
KE = 1.60 * 10^-19 * 1350 = 2.16 * 10^-16 Joules
1/2 m v^2 = KE = 2.16 * 10^-16 J
v^2 = 4.32 * 10E-16 / 1.67 * 10-27 = 2.59 * 10^11
v = 5.09 * 10^5 m/s
(520 lm) divided by (13 lm/W)
= (520 lm) times (W/13lm)
= (520/13) (lm · W / lm)
= 40 W
Answer:
a) T = 608.22 N
b) T = 608.22 N
c) T = 682.62 N
d) T = 533.82 N
Explanation:
Given that the mass of gymnast is m = 62.0 kg
Acceleration due to gravity is g = 9.81 m/s²
Thus; The weight of the gymnast is acting downwards and tension in the string acting upwards.
So;
To calculate the tension T in the rope if the gymnast hangs motionless on the rope; we have;
T = mg
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs the rope at a constant rate tension in the string is
= (62.0 kg)(9.81 m/s²)
= 608.22 N
When the gymnast climbs up the rope with an upward acceleration of magnitude
a = 1.2 m/s²
the tension in the string is T - mg = ma (Since acceleration a is upwards)
T = ma + mg
= m (a + g )
= (62.0 kg)(9.81 m/s² + 1.2 m/s²)
= (62.0 kg) (11.01 m/s²)
= 682.62 N
When the gymnast climbs up the rope with an downward acceleration of magnitude
a = 1.2 m/s² the tension in the string is mg - T = ma (Since acceleration a is downwards)
T = mg - ma
= m (g - a )
= (62.0 kg)(9.81 m/s² - 1.2 m/s²)
= (62.0 kg)(8.61 m/s²)
= 533.82 N
Answer:
I think D it could maybe B
Answer:
Explanation:
Given
mass of boy 
mass of girl 
speed of girl after push 
Suppose speed of boy after push is 
initially momentum of system is zero so final momentum is also zero because momentum is conserved




i.e. velocity of boy is 2.82 m/s towards west