The answer would be: c. High levels of dissolved oxygen
Oxygen is vital for most (aerobic) organism. Fish using oxygen that dissolved in the water so high level of dissolved oxygen will make the fish grow easier. Water with pH of 5 would be an acid water. Acid is corrosive and it can kill some organism that sensitive. High levels of fecal coliform mean the water contaminated with fecal material and must have a high level of bacteria.
Answer:
the electromagnetic pulse
Explanation:
The answer is B.It decreases the change of the momentum of the person
Answer:
Explanation:
Potential energy on the surface of the earth
= - GMm/ R
Potential at height h
= - GMm/ (R+h)
Potential difference
= GMm/ R - GMm/ (R+h)
= GMm ( 1/R - 1/ R+h )
= GMmh / R (R +h)
This will be the energy needed to launch an object from the surface of Earth to a height h above the surface.
Extra energy is needed to get the same object into orbit at height h
= Kinetic energy of the orbiting object at height h
= 1/2 x potential energy at height h
= 1/2 x GMm / ( R + h)
Answer:
h
Explanation:
Coulomb's law, or Coulomb's inverse-square law, is an experimental law[1] of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force.[2] The law was first discovered in 1785 by French physicist Charles-Augustin de Coulomb, hence the name. Coulomb's law was essential to the development of the theory of electromagnetism, maybe even its starting point,[1] as it made it possible to discuss the quantity of electric charge in a meaningful way.[3]
The law states that the magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them,[4]
{\displaystyle F=k_{\text{e}}{\frac {q_{1}q_{2}}{r^{2}}}}{\displaystyle F=k_{\text{e}}{\frac {q_{1}q_{2}}{r^{2}}}}
Here, ke is Coulomb's constant (ke ≈ 8.988×109 N⋅m2⋅C−2),[1] q1 and q2 are the signed magnitudes of the charges, and the scalar r is the distance between the charges.
The force is along the straight line joining the two charges. If the charges have the same sign, the electrostatic force between them is repulsive; if they have different signs, the force between them is attractive.
Being an inverse-square law, the law is analogous to Isaac Newton's inverse-square law of universal gravitation, but gravitational forces are always attractive, while electrostatic forces can be attractive or repulsive.[2] Coulomb's law can be used to derive Gauss's law, and vice versa. In the case of a single stationary point charge, the two laws are equivalent, expressing the same physical law in different ways.[5] The law has been tested extensively, and observations have upheld the law on the scale from 10−16 m to 108 m.[5]