1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irakobra [83]
2 years ago
5

The worst case signal-to-noise ratio at the output of an FM detector occurs when: ________

Engineering
1 answer:
AlexFokin [52]2 years ago
6 0

Answer:

a. the desired signal is 90 degrees out of phase with the intelligence signal.

Explanation:

The signal to noise ratio of FM detector is defined as function of modulation index for SSB FM signal plus narrow band Gaussian noise at input. The ratio is usually higher than 1:1 which indicates more signals than noise.

You might be interested in
Pointssss 100 and brainliest :)
Delvig [45]

Answer:

thank you for the free point have a great rest of your day

7 0
2 years ago
Tanya Pierce, President and owner of Florida Now Real Estate is seeking your assistance in designing a database for her business
const2013 [10]

Answer:

the answer is attributes for each entity

5 0
3 years ago
Define a function pyramid_volume with parameters base_length, base_width, and pyramid_height, that returns the volume of a pyram
Maslowich

Hi, you haven't provided the programing language in which you need the code, I'll just explain how to do it using Python, and you can apply a similar method for any programming language.

Answer:

1. def pyramid_volume(base_length, base_width, pyramid_height):

2.     volume = base_length*base_width*pyramid_height/3

3.     return(volume)

Explanation step by step:

  1. In the first line of code, we define the function pyramid_volume and it's input parameters
  2. In the second line, we perform operations with the input values to get the volume of the pyramid with a rectangular base, the formula is V = l*w*h/3
  3. In the last line of code, we return the volume  

In the image below you can see the result of calling the function with input 4.5, 2.1, 3.0.

5 0
3 years ago
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
2 years ago
Pie charts should have no more than eight segments. True or False?
Pepsi [2]

Answer:

Explanation:

Pie charts generally should have no more than eight segments.

6 0
2 years ago
Read 2 more answers
Other questions:
  • 3. When starting an automatic transmission
    6·1 answer
  • Subcooled liquid water flows adiabatically in a constant diameter pipe past a throttling valve that is partially open. The liqui
    13·1 answer
  • What is temperature coefficient of resistance
    12·1 answer
  • Sketch the velocity profile for laminar and turbulent flow.
    15·1 answer
  • List two possible reasons the engine oil could have a strong gasoline smell
    15·1 answer
  • Which of the following sentences uses the word malleable correctly?
    7·2 answers
  • Cite another example of information technology companies pushing the boundaries of privacy issues; apologizing, and then pushing
    9·1 answer
  • ما جمع كلمة القوة؟help please
    10·1 answer
  • Write the 5 important of profession education in a point​
    10·1 answer
  • ¿Cuál es el objetivo de la participación del gobierno en la economía?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!