Answer:
36s
Explanation:
Let the objects be A and B.
Let the initial velocity of A be U and the initial velocity of B be 3U
The height sustain by A will be;
The final velocity would be zero
V2 = U2-2gH
Hence
0^2= U2 -2gH
H = U^2/2g
Similarly for object B, the height sustain is;
V2 = (3U)^2-2gH
Hence
0^2= 3U^2 -2gH
U2-2gH
Hence
0^2= U2 -2gH
H = 3U^2/2g
By comparism. The object with higher velocity sustains more height and so should fall longer than object A.
Now object A would take;
From V=U+gt as the object falls freely, the initial velocity is zero hence and the final velocity of the object is;
V=10×12=120m/s let g be 10m/S2
Similarly for object B,
The final velocity for B when it's falling it should be 3×that of A
Meaning
3V= gt
t =3V/g = 3× 120/10 = 36s
I see no multiple choice answer
The current flowing in each resistor of the circuit is 4 A.
<h3>
Equivalent resistance of the series resistors</h3>
The equivalent resistance of the series circuit is calculated as follows;
6 Ω and 4 Ω are in series = 10 Ω
5 Ω and 10Ω are in series = 15 Ω
<h3>Effective resistance of the circuit</h3>

<h3>Current flowing in the circuit</h3>
V = IR
I = V/R
I = 24/6
I = 4 A
Learn more about resistors in parallel here: brainly.com/question/15121871
<span>The Balmer series or Balmer lines in atomic physics, is the designation of one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empirical equation discovered by Johann Balmer in 1885. this is all I know sorry</span>
To keep<span> noise from entering your space, look for </span>sound<span> blockers</span>