Energy transfer by waves: two primary modes = (electromagnetic waves, compression/transverse waves propagating through a medium)
1) electromagnetic waves:
Using a particle model for the wave (photons for light), energy transfer is similar to that by discrete moving object -- particles carry the energy from one place to another in the absence of a medium.
Energy delivery: discrete moving object uses inertia and momentum to transfer the energy from itself to the target. Photons are massless, so the energy delivery mechanism must be different.
2) compression/transverse waves propagating through a medium:
Energy passes through the medium with little to no net flow of the medium itself. In transverse water waves, when the energy wave passes by, to first order, the water particles move in vertical circular paths. This is different from energy transfer by a moving object in that the moving object must displace itself to the target position in order to deliver the energy -- resulting in a net flow of object material.
Answer:
The reading will be the same.
Explanation:
Mass does not depend upon anything and it remains the same anywhere. What changes is the weight of the body because it depends upon gravity and is different at different places.
Giving me the brainest will be helpful.
The force of attraction will decrease when objects move apart
Answer:
155.5 rev/min
Explanation:
First, we will calculate the initial moment of inertia I_o. We will consider the ice skater as a rod rotating around its axis. Then, we calculate the final moment of inertia I_f. In this occasion we consider the arms as a rod of length L that is horizontally positioned, L so that the length of an arm is L/2. We will call M_1 the mass that remains close to the rotation axis (90 percent) and M_2 the mass located at the arms (10 percent). Finally, we write the equation for the conservation of angular momentum and we solve for ω_f.
I_o=MR^2/2
=(45)(0.15)^2/2
=0.5 kgm^2
M_1=(0.9)(45)
=40.5 kg
M_2=(0.1)(45)
=4.5 kg
I_f=M_1*R^2/2+M_2*L^2/12
=1.1 kg m^2
I_f*ω_f=I_o*ω_o
ω_f = I_o*ω_o/ I_f
=155.5 rev/min