It is because that is how mirrors work, they reflect light, and since we see objects because we are seeing the light these objects reflect, what is reflected back by the mirror is what we see.
Answer:
The car must be moving away from the person.
Explanation:
From Doppler's Effect, we know that when a sound source moves towards a stationary observer, the apparent frequency of that sound increases. While the apparent frequency decreases if the source moves away from the stationary observer.
The audible range of frequencies for a human ear is 20 Hz to 20000 Hz. Therefore, in order for the sound of a loud speaker to be audible for the person, the frequency must decrease below 20000 Hz.
<u>Due to this reason, the car must be moving away from the person.</u>
Correct order, from lowest potential energy to highest potential energy:
E - C - D - B - A
Explanation:
The gravitational potential energy of the car is given by:

where
m is the car's mass
g is the gravitational acceleration
h is the height of the car relative to the ground
In the formula, we see that m and g are constant, so the potential energy of the car depends only on its height above the ground, h. The higher the car from the ground, the larger its potential energy. Therefore, the position with least potential energy will be E, since the height is the minimum. Then, C will have more potential energy, because the car is at higher position, and so on: the position with greatest potential energy is A, because the height of the car is maximum.
The air that is inside a ship is much less dense than water. That's what keeps it floating! ... The closer the total density of the ship is to the density of the same volume of water, the greater the amount of the ship that will be in the water.
Answer:
K_{total} = 19.4 J
Explanation:
The total kinetic energy that is formed by the linear part and the rotational part is requested

let's look for each energy
linear
= ½ m v²
rotation
= ½ I w²
the moment of inertia of a solid sphere is
I = 2/5 m r²
we substitute
= ½ mv² + ½ I w²
angular and linear velocity are related
v = w r
we substitute
K_{total} = ½ m w² r² + ½ (2/5 m r²) w²
K_{total} = m w² r² (½ + 1/5)
K_{total} =
m w² r²
let's calculate
K_{total} =
6.40 16.0² 0.130²
K_{total} = 19.4 J