Answer:
3.33 M
Explanation:
It seems your question is incomplete, however, that same fragment has been found somewhere else in the web:
" <em>A chemist prepares a solution of silver nitrate (AgNO3) by measuring out 85.g of silver nitrate into a 150.mL volumetric flask and filling the flask to the mark with water.</em>
<em>Calculate the concentration in mol/L of the chemist's silver nitrate solution. Be sure your answer has the correct number of significant digits.</em> "
In this case, first we <u>calculate the moles of AgNO₃</u>, using its molecular weight:
- 85.0 g AgNO₃ ÷ 169.87 g/mol = 0.500 mol AgNO₃
Then we<u> convert the 150 mL of the volumetric flask into L</u>:
Finally we <u>divide the moles by the volume</u>:
- 0.500 mol AgNO₃ / 0.150 L = 3.33 M
The higher the current, the more likely it is lethal. Since current is proportional to voltage when resistance is fixed (ohm's law), high voltage is an indirect risk for producing higher currents.
Answer:
balances and scales, measurement transducers, vibrating tube sensors, Newtonian mass measurement devices and the use of gravitational interaction between objects.
Explanation:
<span>using the law pv=nrT and equating these you get the equation v1/t1 = v2/t2 since pressure is constant it also cancels with n and r. show that v1=36.4, t1 = 25 + 273.15 and t2 = 88 +273.15. 273.15 is the Kelvin conversion. then solve for v2. This is 44.1 L.</span>