Answer:
, 
Explanation:
The acceleration of the plane can be determined by means of the kinematic equation that correspond to a Uniformly Accelerated Rectilinear Motion.
(1)
Where
is the final velocity,
is the initial velocity,
is the acceleration and
is the distance traveled.
Equation (1) can be rewritten in terms of ax:
(2)
Since the plane starts from rest, its initial velocity will be zero (
):
Replacing the values given in equation 2, it is gotten:




So, The acceleration of the plane is
Now that the acceleration is known, the next equation can be used to find out the time:
(3)
Rewritten equation (3) in terms of t:



<u>Hence, the plane takes 26.92 seconds to reach its take-off speed.</u>
Answer:
6.6 atm
Explanation:
Using the general gas law
P₁V₁/T₁ = P₂V₂/T₂
Let P₂ be the new pressure
So, P₂ = P₁V₁T₂/V₂T₁
Since V₂ = 2V₁ , P₁ = 12 atm and T₁ = 273 + t where t = temperature in Celsius
T₂ = 273 + 2t (since its Celsius temperature doubles).
Substituting these values into the equation for P₂, we have
P₂ = P₁V₁(273 + 2t)/2V₁(273 + t)
P₂ = 12(273 + 2t)/[2(273 + t)]
P₂ = 6(273 + 2t)/(273 + t)]
assume t = 30 °C on a comfortable spring day
P₂ = 6(273 + 2(30))/(273 + 30)]
P₂ = 6(273 + 60))/(273 + 30)]
P₂ = 6(333))/(303)]
P₂ = 6.6 atm
Answer:90 mins
Explanation:
majority of artificial satellites are placed in LEO, making one complete revolution around the Earth in about 90 minutes.
1. The stratosphere is above the troposphere. This layer of the atmosphere is where planes fly. At the top of the stratosphere, there is a ozone layer.
2. The mesosphere is above the stratosphere. Temperatures drastically drop in the mesosphere. It is the middle layer of the atmosphere.
3. Here are the layers of the atmosphere:
- Troposphere
- Stratosphere
- Mesosphere
- Thermosphere
- Exosphere
Hope this helps you!