Given that in a parallel circuit:
R1 = 12 ohms
R2= 15 ohms
I = 12 A
I2 = 4 A
V=?
R=?
R3 =?
P=?
Since,
V= IR
or,
V2 = I2 * R2
V2= 4* 15
V2 = 60V
Since in a parallel circuit voltage remain same in all component of the circuit and is equal to the source voltage.
Therefore,
V= V1 = V2 = V3 = 60V
Since,
V= IR
R= V/I
R= 60/12
R= 5 ohm
That is total resistance is equal to 5 ohms.
Since for parallel circuit,
1/R= 1/R1 + 1/R2 + 1/R3
1/5= 1/12+ 1/15 + 1/R3
or
1/R3= 1/5- 1/12- 1/15
1/R3= 1/20
or
R3= 20 ohms
Since,
V=IR
I= V/R
I1= V1/ R1
I1= 60/12
I1= 5 A
I3= V3/R3
I3= 60/20
I3= 3A
Since,
P=VI
P= 60*12
P= 720 watt
P1= V1* I1
P1= 60* 5
P1= 300 watt
P2= V2* I2
P2= 60* 4
P2= 240watt
P3= V3*I3
P3= 60*3
P3= 180 watt
Hence we have,
R1= 12 ohms , R2= 15 ohms, R3= 20 ohms, R= 5 ohms
I1= 5A, I2= 4A, I3= 3A, I= 12 A
V1= V2= V3= V= 60V
P1= 300 watt, P2= 240 watt, P3 = 180 watt, P= 720 watt
Answer:
a) 145.6kgm^2
b) 158.4kg-m^2/s
c) 0.76rads/s
Explanation:
Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation
(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and
(c) the angular speed of the merry-go-round and child after the child has jumped on.
a) From I = MK^2
I = (160Kg)(0.91m)^2
I = 145.6kgm^2
b) The magnitude of the angular momentum is given by:
L= r × p The raduis and momentum are perpendicular.
L = r × mc
L = (1.20m)(44.0kg)(3.0m/s)
L = 158.4kg-m^2/s
c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:
L = Iw
158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]
w = 158.6/208.96
w = 0.76rad/s
Answer:
The amount of force applied to his body is 1944.44 N
<em>The chances of the person dying is very high owing to the high impact force with which the person would experience when he or she lands on the asphalt road due to the jump out of the moving car.</em>
Explanation:
We all know that,
F = Ma where,
F = Force
M = weight of the person
a = acceleration or velocity of the moving car
Therefore;
F = { 70 x (100 x 1000) } / [3600]
= [7 000 000] / 3600
= <u>1944.44 N</u>
Answer:
Explanation:
Incomplete question but for understanding.
We want to find the electrical force between two charges, then you can use the coulombs law which states that the force of attraction or repulsion between two charges is directly proportional to the product of the two charges and inversely proportional to the square of their distance apart,
So,
F = kq1•q2 / r²
Where k is a constant and it is given as
K = 8.99 × 10^9 Nm²/C²
q1 and q2 are the charges and in this question it is not given, so the question is incomplete. Let assume that,
q1 = - 1.609 × 10^-19 C electron
q2 = 1.609 × 10^-19 C proton
Since unlike charges attract, then it is force of attraction
Also, r is the distance apart and it is not given, let assume the distance between the two charges is 2 × 10^-5m
Then,
F = kq1•q2 / r²
F = 8.99 × 10^9 × 1.609 × 10^-19 × 1.609 × 10^-19 / (2 × 10^-5)²
F = 5.82 × 10^-19 N