Answer:
d= 4.079m ≈ 4.1m
Explanation:
calculate the shaft diameter from the torque, \frac{τ}{r} = \frac{T}{J} = \frac{C . ∅}{l}
Where, τ = Torsional stress induced at the outer surface of the shaft (Maximum Shear stress).
r = Radius of the shaft.
T = Twisting Moment or Torque.
J = Polar moment of inertia.
C = Modulus of rigidity for the shaft material.
l = Length of the shaft.
θ = Angle of twist in radians on a length.
Maximum Torque, ζ= τ × \frac{ π}{16} × d³
τ= 60 MPa
ζ= 800 N·m
800 = 60 × \frac{ π}{16} × d³
800= 11.78 × d³
d³= 800 ÷ 11.78
d³= 67.9
d= \sqrt[3]{} 67.9
d= 4.079m ≈ 4.1m
The height at which the mass will be lifted is; 3 meters
<h3>How to utilize efficiency of a machine?</h3>
Formula for efficiency is;
η = useful output energy/input energy
We are given
η = 60% = 0.6
Input energy = 4 KJ = 4000 J
Thus;
0.6 = useful output energy/4000
useful output energy = 0.6 * 4000
useful output energy = 2400 J
Work done in lifting mass(useful output energy) = force * distance moved
Useful output energy = 800 * h
where h is height to lift mass
Thus;
800h = 2400
h = 2400/800
h = 3 meters
Read more about Machine Efficiency at; brainly.com/question/3617034
#SPJ1
Jake because the more speed, the more kinetic energy which = force.
Answer:
A driver is an independent software application that is used to configure communication between a personal or industrial computer and a hardware device