Answer:
good morning you are you still
That would be
0 degrees Celsius aka the melting point of water.... If you look at the diagram I attached you notice that at 0 degrees Celsius it is flat, this is because much heat is needed at this point for water to rise to 1 degree... It is the same for the boiling point (100)<span />
Answer:
a) 567J
b) 283.5J
c)850.5J
Explanation:
The expression for the translational kinetic energy is,

Substitute,
14kg for m
9m/s for v

The translational kinetic energy of the center of mass is 567J
(B)
The expression for the rotational kinetic energy is,

The expression for the moment of inertia of the cylinder is,

The expression for angular velocity is,

substitute
1/2mr² for I
and vr for w
in equation for rotational kinetic energy as follows:



The rotational kinetic energy of the center of mass is 283.5J
(c)
The expression for the total energy is,

substitute 567J for E(r) and 283.5J for E(R)

The total energy of the cylinder is 850.5J
Explanation:
Question 1
1.The wires are made of conducting materials e.g copper
2. A light bulb is made of filament material e.g tungsten with gases enclosed in a glass material
3.The lens is made of transparent glass material
4 The reflector is made of plastic with silver lining
5. The exterior casing of most flash lights are made of plastic
Question 2.
1.Copper is used to conduct electric current from the battery to the bulb
2.The tungsten filament ignite the gases and causes it to glow
3. The lens covers the lamp on your flashlight so that the glass on the lamp
/bulbs does not get broken.
4.The reflector redirects the light rays from the lamp, creating a steady beam of light, which is the light you see emitting from the flashlight.
5. The exterior cases houses the entire assembly and makes the flash light handy for use
Answer:
The possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.
Explanation:
Given that,
The notes produced by a tuba range in frequency from approximately 45 Hz to 375 Hz.
The speed of sound in air is 343 m/s.
To find,
The wavelength range for the corresponding frequency.
Solution,
The speed of sound is given by the following relation as :

Wavelength for f = 45 Hz is,


Wavelength for f = 375 Hz is,


So, the possible range of wavelengths in air produced by the instrument is 7.62 m and 0.914 m respectively.