Answer:
25 m/s in the opposite direction with the ship recoil velocity.
Explanation:
Assume the ship recoil velocity and velocity of the cannon ball aligns. By the law of momentum conservation, the momentum is conserved before and after the shooting. Before the shooting, the total momentum is 0 due to system is at rest. Therefore, the total momentum after the shooting must also be 0:

where
are masses of the ship and ball respectively.
are the velocities of the ship and ball respectively, after the shooting.



So the cannon ball has a velocity of 25 m/s in the opposite direction with the ship recoil velocity.
Explanation:
Acceleration is the rate of change of velocity with time. When acceleration increases a body moves a faster velocity.
- In the graph acceleration at time t= 100s is rapidly increasing.
- At t = 20s, the acceleration of the body is getting started up.
A vehicle at time 100s will have a faster velocity compared to one at t = 20s
This is false. Your hypothesis, or prediction, is just that: a prediction. Saying its a failure will result in bias.
You may have a cold if you do not feel well, depends on the symptoms
600/3 = 200
the slope is 200m/min
OR
600/ (3/60) =
600 x 60/3 =
600 x 20 = 12,000 meters per hour