1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tangare [24]
2 years ago
5

If the half life of a decaying isotope is 10 years, which statement is true after 8 years

Physics
2 answers:
Mars2501 [29]2 years ago
7 0
You need to tell us the different statements in order to answer your question
Jobisdone [24]2 years ago
5 0

Answer:

is suppoesd to say after 20 yrs

Explanation:

You might be interested in
Work done depends on
natima [27]

Answer:

C. Both force and displacement

Explanation:

Hope this helps

3 0
2 years ago
Hello I need some help.Two guys enetr in a room,a guy come from outside(there is cold)and another guy come from a room(there is
slavikrds [6]
I would feel warm because putting cold and hot together is gonna be warm because with the cold it is cooling down the hot to make warm
5 0
3 years ago
If a proton were released in the electric field above, what direction would it move?
Afina-wow [57]

Answer:

d because the proton would move towards the negative plate

Explanation:

5 0
3 years ago
The speed of water flowing through a hose increases from 2.05 m/s to 31.4 m/s as it goes through the nozzle. What is the pressur
Nimfa-mama [501]

The pressure in the hose as the speed of water changes from 2.05 m/s to 31.4 m/s as it goes through the nozzle is 5.92 × 10⁵ N/m².

Given:

The flow of water through the hose initially, v₁ = 2.05 m/s

The flow of water through the hose initially, v₂ = 31.4 m/s

Calculation:

From Bernoulli's equation we have:

P₁ + 1/2 ρv₁² + ρgh₁ = P₂ + 1/2 ρv₂² + ρgh₂

where P₁ is atmospheric pressure

           P₂ is the pressure in the hose

           ρ is the density of the fluid

           h₁ is the initial height

           h₂ is the final height

           v₁ is the initial velocity of the fluid

           v₂ is the final velocity of the fluid  and

           g is the acceleration due to gravity

Re-arranging the above equation we get:

P₂ = P₁ + 1/2 ρ(v₁²-v₂²) + ρg (h₁-h₂)

Applying values in the above equation we get:

P₂ = P₁ + 1/2 ρ(v₁²-v₂²) + ρg (0)

    = (1.01 × 10⁵ Pa)+ 1/2 (10³ g/m³) [(31.4m/s)²-(2.05 m/s)²]

    = (1.01 × 10⁵ Pa)+ 1/2 (10³ g/m³) [981.7575]

    = (1.01 × 10⁵ Pa)+ (4.91 × 10⁵ Pa)

    = 5.92 × 10⁵ Pa

    = 5.92 × 10⁵ N/m²

Therefore, the pressure in the hose is 5.92 × 10⁵ N/m².

Learn more about Bernoulli's equation here:

<u>brainly.com/question/9506577</u>

#SPJ4

6 0
1 year ago
Starting from rest, a disk rotates about its central axis with constant angular acceleration. in 6.00 s, it rotates 44.5 rad. du
Klio2033 [76]

a. The disk starts at rest, so its angular displacement at time t is

\theta=\dfrac\alpha2t^2

It rotates 44.5 rad in this time, so we have

44.5\,\mathrm{rad}=\dfrac\alpha2(6.00\,\mathrm s)^2\implies\alpha=2.47\dfrac{\rm rad}{\mathrm s^2}

b. Since acceleration is constant, the average angular velocity is

\omega_{\rm avg}=\dfrac{\omega_f+\omega_i}2=\dfrac{\omega_f}2

where \omega_f is the angular velocity achieved after 6.00 s. The velocity of the disk at time t is

\omega=\alpha t

so we have

\omega_f=\left(2.47\dfrac{\rm rad}{\mathrm s^2}\right)(6.00\,\mathrm s)=14.8\dfrac{\rm rad}{\rm s}

making the average velocity

\omega_{\rm avg}=\dfrac{14.8\frac{\rm rad}{\rm s}}2=7.42\dfrac{\rm rad}{\rm s}

Another way to find the average velocity is to compute it directly via

\omega_{\rm avg}=\dfrac{\Delta\theta}{\Delta t}=\dfrac{44.5\,\rm rad}{6.00\,\rm s}=7.42\dfrac{\rm rad}{\rm s}

c. We already found this using the first method in part (b),

\omega=14.8\dfrac{\rm rad}{\rm s}

d. We already know

\theta=\dfrac\alpha2t^2

so this is just a matter of plugging in t=12.0\,\mathrm s. We get

\theta=179\,\mathrm{rad}

Or to make things slightly more interesting, we could have taken the end of the first 6.00 s interval to be the start of the next 6.00 s interval, so that

\theta=44.5\,\mathrm{rad}+\left(14.8\dfrac{\rm rad}{\rm s}\right)t+\dfrac\alpha2t^2

Then for t=6.00\,\rm s we would get the same \theta=179\,\rm rad.

7 0
3 years ago
Other questions:
  • A 6 m long, uniform ladder leans against a frictionless wall and makes an angle of 74.3 ◦ with the floor. The ladder has a mass
    12·1 answer
  • In a double-slit interference experiment you are asked to use laser light of different wavelengths and determine the separation
    11·1 answer
  • If the mass of the products measured 120 g, what would be the mass of the reactants?
    8·2 answers
  • A thin-walled cylindrical steel water storage tank 30 ft in diameter and 62 ft long is oriented with its longitudinal axis verti
    14·1 answer
  • The Andromeda galaxy is the closest major galaxy to our own. Andromeda shows a distinct blue-shift of light when we analyze it.
    12·1 answer
  • A wooden rod of negligible mass and length 80.0cm is pivoted about a horizontal axis through its center. A white rat with mass 0
    11·1 answer
  • Two children who are bored while waiting for their flight at the airport decide to race from one end of the 20-m-long moving sid
    5·2 answers
  • PLZ HELP I WILL GIVE BRAINLIEST
    8·1 answer
  • Please answer the questions... I will surely mark you as the brainliest according to me :)
    10·1 answer
  • A bus is moving with an acceleration of 4 m/s^2. If it was initially at rest,
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!