Bromine attracts electrons more strongly. Cesium is In fact the least electro negative element.
Sodium is more likely to lose an electron because is is less electro negative. Strong electronegativity make the element want more electrons. Sodium has loose electrons with a lower electronegativity so it gives it up easier.
Answer:224
Explanation:
We should answer it with Stoichiometry
We say: 20 g H2× (1 mol/ 2g)× ( 22.4 lit/ 1 mol) = 224
Means: we have 20 grams and every 2g H2, equals to 1 mol of it and every 1 mol of H2, equals to 22.4 lit( because of STP)
hope you got this:)
Answer:
∆H° rxn = - 93 kJ
Explanation:
Recall that a change in standard in enthalpy, ∆H°, can be calculated from the inventory of the energies, H, of the bonds broken minus bonds formed (H according to Hess Law.
We need to find in an appropiate reference table the bond energies for all the species in the reactions and then compute the result.
N₂ (g) + 3H₂ (g) ⇒ 2NH₃ (g)
1 N≡N = 1(945 kJ/mol) 3 H-H = 3 (432 kJ/mol) 6 N-H = 6 ( 389 kJ/mol)
∆H° rxn = ∑ H bonds broken - ∑ H bonds formed
∆H° rxn = [ 1(945 kJ) + 3 (432 kJ) ] - [ 6 (389 k J]
∆H° rxn = 2,241 kJ -2334 kJ = -93 kJ
be careful when reading values from the reference table since you will find listed N-N bond energy (single bond), but we have instead a triple bond, N≡N, we have to use this one .
Answer:
D.) H-O
Explanation:
Polarity is determined based on the difference in electronegativity of the atoms. The greater the difference, the more polar the bond. The general trend is that the atoms in the top-right corner of the periodic table are the most electronegative.
A.) is incorrect because H-H has no electronegativity difference, making it nonpolar.
B.) and C.) are incorrect because their electronegativity differences are not the greatest.
D.) is correct because the electronegativity difference between the H and O is the greatest.