A beaker and a microscope
Molecular clocks because the m<span>easure changes in DNA or proteins to indicate degrees of relationship among species.Molecular clocks, together with evidence from the fossil record, allows scientists to estimate how long ago various groups of organisms diverged evolutionarily from one another</span>
Knowing the ratio between atoms we can write an empirical formula:
<span>C4H6O </span>
<span>we compute the molar mass of this single formula: </span>
<span>4x12 + 6 x 1 + 16 x1 = 70 g / mol </span>
<span>Now, as we know the actual molar mas being 280 g/mol, we divide this number by 70 and we get the ratio between empirical formula and molecular actual formula: </span>
<span>280 / 70 = 4 </span>
<span>This means that actual molecular formula is: </span>
<span>(C4H6O)4 or </span>
<span>C16H24O4 </span>
A is your answer.
On the periodic table the atomic number is the number of protons inside the nucleus.
Answer:
Mass of C₂H₄N₂ produced = 3.64 g
Explanation:
The balanced chemical equation for the reaction is given below:
3CH₄ (g) + 5CO₂ (g) + 8NH₃ (g) → 4C₂H₄N₂ (g) + 10H₂O (g)
From the equation, 3 moles of CH₄ reacts with 5 moles of CO₂ and 8 moles of NH₃ to produce 4 moles of C₂H₄N₂ and 10 moles of H₂O
Molar masses of the compounds are given below below:
CH₄ = 16 g/mol; CO₂ = 44 g/mol; NH3 = 17 g/mol; C₂H₄N₂ = 56 g/mol; H₂O g/mol
Comparing the mole ratios of the reacting masses;
CH₄ = 1.65/16 = 0.103
CO₂ = 13.5/44 = 0.307
NH₃ = 2.21/17 = 0.130
converting to whole number ratios by dividing with the smallest ratio
CH₄ = 0.103/0.103 = 1
CO₂ = 0.307/0.103 = 3
NH₃ = 0.130/0.103 = 1.3
Multiplying through with 5
CH₄ = 1 × 5 = 5
CO₂ = 3 × 5 = 15
NH₃ = 1.3 × 5 = 6.5
Therefore, the limiting reactant is NH₃
8 × 17 g (136 g) of NH₃ reacts to produce 4 × 56 g (224 g) of C₂H₄N₂
Therefore, 2.21 g of NH₃ will produce (2.21 × 224)/136 g of C₂H₄N₂ = 3.64 g of C₂H₄N₂
Mass of C₂H₄N₂ produced = 3.64 g