<span>a.The hiker had an easy, level trail from 11:00-12:00 and was able to travel the fastest during that time period.---> may be because this was indeed fastest stage
b.The hiker got tired and walked the slowest from 1:00-2:00.---> no, because this was not the slowest stage
c.The hiker stopped for lunch from 11:00-12:00 and that slowed him down.---> no because this was the fastest stage
d.The hiker ended up in the same place that he started.---> no, because the hiker walked more toward east than toward west and more toward south than toward north.
Answer: option a) </span>
Answer: Enceladus
Explanation:
Enceladus is a small, icy body with an undergound ocean beneath its crust. Cassini discovered that geyser-like jets spew water vapor and ice particles. It is also the sixth largest moon in Saturn and just about a tenth of the largest moon in Saturn; Titan. It is often regarded as one of the most reflective body in the solar system as a result of its icy surface.
Answer:
y = 80.2 mille
Explanation:
The minimum size of an object that can be seen is determined by the diffraction phenomenon, if we use the Rayleigh criterion that establishes that two objects can be distinguished without the maximum diffraction of a body coincides with the minimum of the other body, therefore so much for the pupil of the eye that it is a circular opening
θ = 1.22 λ/ d
in a normal eye the diameter of the pupils of d = 2 mm = 0.002 m, suppose the wavelength of maximum sensitivity of the eye λ = 550 nm = 550 10⁻⁹ m
θ = 1.22 550 10⁻⁹ / 0.002
θ = 3.355 10⁻⁴ rad
Let's use trigonometry to find the distance supported by this angle, the distance from the moon to the Earth is L = 238900 mille = 2.38900 10⁵ mi
tan θ = y / L
y = L tan θ
y = 2,389 10⁵ tan 3,355 10⁻⁴
y = 8.02 10¹ mi
y = 80.2 mille
This is the smallest size of an object seen directly by the eye
You would know a decomposition reaction occurred if the reactants separated. For example from AB → A+B.
Now if you look at your options only 1 works out for that equation. Letter A.
From the compound K2CO3 it split up to K2O +CO2
It cannot be letter B because synthesis/combination occurred. The same goes for letter C. Letter D, single displacement occurred.
Again, the answer is A.
Answer:
Cp = 4756 [J/kg*°C]
Explanation:
In order to calculate the specific heat of water, we must use the equation of energy for heat or heat transfer equation.
Q = m*Cp*(T_f - T_i)/t
where:
Q = heat transfer = 2.6 [kW] = 2600[W]
m = mass of the water = 0.8 [kg]
Cp = specific heat of water [J/kg*°C]
T_f = final temperature of the water = 100 [°C]
T_i = initial temperature of the water = 18 [°C]
t = time = 120 [s]
Now clearing the Cp, we have:
Cp = Q*t/(m*(T_f - T_i))
Now replacing
Cp = (2600*120)/(0.8*(100-18))
Cp = 4756 [J/kg*°C]