1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zalisa [80]
2 years ago
13

How can the strength of an electromagnet be increased?

Physics
1 answer:
rewona [7]2 years ago
5 0

Answer:

You can make an electromagnet stronger by doing these things: wrapping the coil around a piece of iron (such as an iron nail) adding more turns to the coil. increasing the current flowing through the coil.

Explanation:

You might be interested in
If a rigid body rotates about a fixed axis passing through its center of mass, the body's linear momentum is
dexar [7]

Answer:

The linear momentum is zero

Explanation:

Because

When a rigid body is rotating about a fixed axis passing through point O, the body’s linear momentum given as L = mvG

But VG= 0 so

Linear momentum is zero

6 0
3 years ago
An electron moves in a circular path perpendicular to a uniform magnetic field with a magnitude of 2.14 mT. If the speed of the
JulsSmile [24]

Answer:

(a) 3.9cm

(b) 1.66 x 10⁻⁸s

Explanation:

Since the electron is moving in a circular path, the centripetal acceleration needed to keep it from slipping off is provided by the magnetic force. This force (F), according to Newton's second law of motion is given by,

F = m x a          --------------(i)

Where;

m = mass of the particle

a = acceleration of the mass

The centripetal acceleration is given by;

a = v² / r          [v = linear velocity of particle, r = radius of circular path]

<em>Therefore, equation (i) becomes;</em>

F = m v²/ r             --------------------(ii)

The magnitude of the magnetic force on a moving charge in a magnetic field as stated by Lorentz's law is given by;

F = qvBsinθ          -------------(iii)

Where;

q = charge of the particle

v = velocity of the particle

B = magnetic field

θ = angle between the velocity and the magnetic field

<em>Combine equations (ii) and (iii) as follows;</em>

m (v² / r) = qvBsinθ         [divide both side by v]

m v / r = qBsinθ              [make r subject of the formula]

r = (m v) / (qBsinθ)              ---------(iv)

(a) From the question;

v = 1.48 x 10⁷m/s

B = 2.14mT = 2.14 x 10⁻³T

θ = 90°          [since the direction of velocity is perpendicular to magnetic field]

m = mass of electron = 9.11 x 10⁻³¹kg

q = charge of electron = 1.6 x 10⁻¹⁹C

Substitute these values into equation (iv) as follows;

r = (9.11 x 10⁻³¹ x 1.48 x 10⁷) / (1.6 x 10⁻¹⁹ x 2.14 x 10⁻³ sin 90°)

r = 3.9 x 10⁻²m

r = 3.9cm

Therefore, the radius of the circular path is 3.9cm

(b) The time interval required to complete one revolution is the period (T) of the motion of the electron and it is given by

T = d / v          --------------(*)

Where;

d = distance traveled in the circular path in one complete turn = 2πr

v = velocity of the motion = 1.48 x 10⁷m/s

d = 2 π (3.9 x 10⁻²)            [Take π = 22/7 = 3.142]

d = 2(3.142)(3.9 x 10⁻²) = 0.245m

Substitute the values of d and v into equation (*) as follows;

T = 0.245 / 1.48 x 10⁷

T = 0.166 x 10⁻⁷s

T = 1.66 x 10⁻⁸s

Therefore, the time interval is 1.66 x 10⁻⁸s

6 0
3 years ago
1) You slam on the brakes of your car in a panic, and skid a certain distance on a straight level road. If you had been travelin
aleksandr82 [10.1K]

Answer:

d = 4 d₀o

Explanation:

We can solve this exercise using the relationship between work and the variation of kinetic energy

         W = ΔK

In that case as the car stops v_f = 0

the work is

          W = -fr d

we substitute

          - fr d₀ = 0 - ½ m v₀²

           d₀ = ½ m v₀² / fr

now they indicate that the vehicle is coming at twice the speed

          v = 2 v₀

using the same expressions we find

           d = ½ m (2v₀)² / fr

           d = 4 (½ m v₀² / fr)

           d = 4 d₀o

3 0
2 years ago
To practice Tactics Box 9.1 Calculating the Work Done by a Constant Force. Recall that the work W done by a constant force F⃗ at
insens350 [35]

Answer:

The vector magnitudes F and r are always postive, so the sign o W is determined entirely by the angle e between the force and the displacement.Submit Figure 1 off 1 part C

3 0
3 years ago
Read 2 more answers
A student investigated how the mass of water in an electric kettle affected the time taken for the water to reach boiling point.
Sedbober [7]

Answer:

1.because of the heat produced by the socat

2. they should have control how they placed the heater

3. because the water is to much

4.because is different from the question

5. because that is how the question is

4 0
2 years ago
Other questions:
  • A european car manufacturer reports that the fuel efficiency of the new microcar is 28.5 km/l highway and 22.0 km/l city. what a
    15·1 answer
  • If an object is only partially submerged in a fluid, which of the following is true?
    12·1 answer
  • A cyclist overcomes a resistive force of 30 N in order to cycle 30 m. It takes her 6 seconds to cycle this distance. Calculate t
    10·1 answer
  • What is 541.2 mg in grams
    11·2 answers
  • What is the ostrich’s average acceleration from 9.0 to 18s
    15·1 answer
  • A bungee jumper has a mass of 60kg and uses a 25m long bungee cord (unstretched length) with an elastic coefficient of 800N/m. a
    5·2 answers
  • Amit has found a rock in his backyard and would like to measure its mass, volume, and density. What tools can he use to perform
    10·1 answer
  • How far (in meters) will you travel in 3 minutes running at a rate of 6 m/s?
    11·1 answer
  • 580 nm light shines on a double slit with d=0.000125 m. What is the angle of the third dark interference minimum (m=3)?
    6·1 answer
  • For the galvanic cell at 298 k zn(s) 2in2 (aq)zn2 (aq) 2in (aq) eocell = 0.36 v what is the equilibrium constant, k?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!