Answer:
K = G Mm / 9R
Explanation:
Expression for escape velocity V_e = 
Kinetic energy at the surface = 1/2 m V_e ²
= 1/2 x m x 2GM/R
GMm/R
Potential energy at the surface
= - GMm/R
Total energy = 0
At height 9R ( 8R from the surface )
potential energy
= - G Mm / 9R
Kinetic energy = K
Total energy will be zero according to law of conservation of mechanical energy
so
K - G Mm / 9R = 0
K = G Mm / 9R
Relatively hot objects emit visible light.
Some examples:
==> the wire coils in the toaster;
==> the spoon that you stuck in the flame on the stove;
==> the fine wire in the lightbulb when current goes through it.
VERY radioactive objects also do that. But if you're actually
standing there watching an object that's THAT radioactive,
then you're in big trouble.
If you apply a little bit of force, one will move easier than the other since it is lighter.
Are there any options??
I would have to say metal of course but without options I can't assume anything
Answer:
m1/m2 = 0.51
Explanation:
First to all, let's gather the data. We know that both rods, have the same length. Now, the expression to use here is the following:
V = √F/u
This is the equation that describes the relation between speed of a pulse and a force exerted on it.
the value of "u" is:
u = m/L
Where m is the mass of the rod, and L the length.
Now, for the rod 1:
V1 = √F/u1 (1)
rod 2:
V2 = √F/u2 (2)
Now, let's express V1 in function of V2, because we know that V1 is 1.4 times the speed of rod 2, so, V1 = 1.4V2. Replacing in the equation (1) we have:
1.4V2 = √F/u1 (3)
Replacing (2) in (3):
1.4(√F/u2) = √F/u1 (4)
Now, let's solve the equation 4:
[1.4(√F/u2)]² = F/u1
1.96(F/u2) =F/u1
1.96F = F*u2/u1
1.96 = u2/u1 (5)
Now, replacing the expression of u into (5) we have the following:
1.96 = m2/L / m1/L
1.96 = m2/m1 (6)
But we need m1/m2 so:
1.96m1 = m2
m1/m2 = 1/1.96
m1/m2 = 0.51