Answer:
energy is the capability or ability to do work
Explanation:
An object that possesses energy can exert a force on another object. When this happens, energy is transferred from the former to the latter. The second object may move as it receives energy and therefore does some work. Thus, the first object had the capacity to do work.
Answer:
83.20 g of Na3PO4
Explanation:
1 mole of Na3PO4 contains 3 moles of Na+.
Mole of Na ion to be prepared = Molarity x volume
= 0.700 x 725/1000
= 0.5075 mole
If 1 mole of Na3PO4 contains 3 moles of Na ion, then 0.5075 Na ion will be contained in:
0.5075/3 x 1 = 0.1692 mole of Na3PO4
mole of Na3PO4 = mass/molar mass = 0.1692
Hence, mass of Na3PO4 = 0.1692 x molar mass
= 0.1692 x 163.94
= 83.20 g.
83.20 g of Na3PO4 will be needed.
The solution would be like this for this specific problem:
<span>Given:
H2 = </span><span>2.6 atm
CL2 = 3.14 atm</span>
<span>
pressure H2 = 2.6 - x
pressure Cl2 = 3.14 - x
<span>pressure HBr = 2x = 1.13
x = 1.13 / 2 = 0.565
<span>pressure H2 = 2.6 - 0.565 = 2.035
pressure Br2 = 3.14 - 0.565 = 2.575
Kp = (1.13)^2 / 2.035 x 2.575</span></span></span>
= 1.2769 / (5.240125)
= 0.24367739319195629875241525726963
= 0.244
<span>Therefore, the Kp for the reaction at the given temperature
is 0.244.
To add, </span>the hypothetical pressure of a gas if
it alone occupied the whole volume of the original mixture at the same
temperature is called the partial pressure or Kp.
Answer:
carbon
Explanation:
because it is an allotrope of carbon