Answer:
50421.6 m³
Explanation:
The river has an average rate of water flow of 59.6 m³/s.
Tributary B accounts for 47% of the rate of water flow. Therefore the rate of water flow through tributary B is:
Flow rate of water through tributary B = 47% of 59.6 m³/s = 0.47 * 59.6 m³/s = 28.012 m³/s
The volume of water that has been discharged through tributary B = Flow rate of water through tributary B * time taken
time = 30 minutes = 30 minutes * 60 seconds / minute = 1800 seconds
The volume of water that has been discharged through tributary B in 30 seconds = 28.012 m³/s * 1800 seconds = 50421.6 m³
Answer:
power = 49.95 W
and it is self locking screw
Explanation:
given data
weight W = 100 kg = 1000 N
diameter d = 20mm
pitch p = 2mm
friction coefficient of steel f = 0.1
Gravity constant is g = 10 N/kg
solution
we know T is
T = w tan(α + φ )
...................1
here dm is = do - 0.5 P
dm = 20 - 1
dm = 19 mm
and
tan(α) =
...............2
here lead L = n × p
so tan(α) =
α = 3.83°
and
f = 0.1
so tanφ = 0.1
so that φ = 5.71°
and now we will put all value in equation 1 we get
T = 1000 × tan(3.83 + 5.71 )
T = 1.59 Nm
so
power =
.................3
put here value
power =
power = 49.95 W
and
as φ > α
so it is self locking screw
Answer:
Students learn about the fundamental concepts important to fluid power, which includes both pneumatic (gas) and hydraulic (liquid) systems. Both systems contain four basic components: reservoir/receiver, pump/compressor, valve, cylinder.
Explanation:
Answer:
The best saw for cutting miter joints is the backsaw.
Add-on:
i hope this helped at all.
Answer:
thickness1=1.4m
thickness2=2.2m
convection coefficient=0.33W/m^2K
Explanation:
you must use this equation to calculate the thickness:
L=K(T2-T1)/Q
L=thickness
T=temperature
Q=heat
L1=0.04*(0--350)/10=1.4m
L2=0.1(220-0)/10=2.2m
Then use this equation to calculate the convective coefficient
H=Q/(T2-T1)
H=10/(250-220)=0.33W/m^2K