Answer:
A and 3
B and 2
C and 1
Explanation:
<em>Ion</em>ic bonding is the transfer of electrons from a cat<em>ion</em> to an an<em>ion</em>.
Covalent bonding is the sharing of electrons between nonmetal atoms.
<em>Metallic</em> bonding is the sea of electrons <em>metal </em>cations.
Hope this helped!
Answer: 2.4 ml
Solution :
Molar mass of
= 17 g/mole
Given,: 28% w/w of
solution means 28 g of ammonia in 100 g of solution.
Mass of solution = 100 g
Now we have to calculate the volume of solution.
Molarity : It is defined as the number of moles of solute present in one liter of solution.

where,
n = moles of solute 
= volume of solution in liter = 0.11 L
Now put all the given values in the formula of molarity, we get

Using molarity equation:



It became thicker and its viscosity decreased and cannot flow as easily as before.
You ignite a chemical reaction by adding the borax solution to the glue mixture.
In a chemical reaction, the molecules of glue and borax combine to form a flexible, springy new substance. With rubber's vulcanization serving as a model, chemical cross-linking has been extensively employed to change the physical properties of polymeric materials.
Chemical links between polymer chains provide a substance with a more solid structure and perhaps a better-defined shape. It thickened and lost viscosity, making it more difficult to flow than it once could.
Learn more about the chemical reaction here brainly.com/question/16714866
#SPJ4.
I believe the correct answer from the choices listed above is option C. The type of substances that has <span>chemical bonds that are not directional and valence electrons that move freely between the atoms are metals. Hope this answers the question. Have a nice day.</span>
Answer:
- Initial: forward rate > reverse rate
- Equilibrium: forward rate = reverse rate
Explanation:
2NO₂(g) → N₂O₄(g) Kc=4.7
The definition of <em>equilibrium</em> is when the forward rate and the reverse rate are <em>equal</em>.
Because in the initial state there's only NO₂, there's no possibility for the reverse reaction (from N₂O₄ to NO₂). Thus the forward rate will be larger than the reverse rate.