Let's investigate the substances involved in the reaction first. The compound <span>CH3NH3+Cl- is a salt from the weak base CH3NH2 and the strong acid HCl. When this salt is hydrated with water, it will dissociate into CH3NH2Cl and H3O+:
CH3NH3+Cl- + H2O </span>⇒ CH3NH2Cl + H3O+
Nest, let's apply the ICE(Initial-Change-Equilibrium) table where x is denoted as the number of moles used up in the reaction:
CH3NH3+Cl- + H2O ⇒ CH3NH2Cl + H3O+
Initial 0.51 0 0
Change -x +x +x
-------------------------------------------------------------------------------
Equilibrium 0.51 - x x x
Then, let's find the equilibrium constant of the reaction. Since the reaction is hydrolysis we use KH, which is the ratio of Kw to Ka or Kb. Kw is the equilibrium constant for water hydrolysis which is equal to 1×10⁻¹⁴. Since the salt comes from the weak base, we use Kb. Since pKb = 3.44, then. 3.44 = -log(Kb). Thus, Kb = 3.6307×10⁻⁴
KH = Kw/Kb = (x)(x)/(0.51 - x)
1×10⁻¹⁴/ 3.6307×10⁻⁴ = x²/(0.51-x)
x = 3.748×10⁻⁶
Since x from the ICE table is equal to the equilibrium concentration of H+, we can find the pH of the aqueous solution:
pH = -log(H+) = -log(x)
pH = -log ( 3.748×10⁻⁶)
pH = 5.43
C is the answer To the question
Answer:
Explanation:
a ) If N₂(g) and 3H₂(g) is added to the system , 2 moles of additional ammonia will be produced .
b ) If pressure is decreased , less amount of ammonia will be formed, because forward reaction reduces the pressure. So, reaction will take place in reverse direction.
c ) Keq = [ NH₃ ] ² / [ N₂ ] [ H₂]³
d ) Substituting the given values in the equation ,
Keq = [ 6M ] ² / [ 3M] [ 4M]³
= 36 / 3 x 64 M⁻²
= 18.75 x 10⁻² M⁻² .
<span>The effective nuclear charge of an atom = total electrons - inner electrons
For O, ENC = 8 - 2 = 6
For Li, ENC = 3 - 2 = 1
For C, ENC = 6 - 2 = 4
The electrons in O experience the greatest effective nuclear charge and that is why O is smaller than C (which is smaller than Li).</span>
Answer:
In gamma-ray astronomy, gamma-ray bursts are immensely energetic explosions that have been observed in distant galaxies. They are the brightest and most energetic electromagnetic events known to occur in the universe. Bursts can last from ten milliseconds to several hours. b
I love you