Answer:
(i) specific heat
(ii) latent heat of vaporization
(iii) latent heat of fusion
Explanation:
i. Q = mcΔT; identify c.
Here, Q is heat, m is the mass, c is the specific heat and ΔT is the change in temperature.
The amount of heat required to raise the temperature of substance of mass 1 kg by 1 degree C is known as the specific heat.
ii. Q = mLvapor; identify Lvapor
Here, Q is the heat, m is the mass and L is the latent heat of vaporization.
The amount of heat required to convert the 1 kg liquid into 1 kg vapor at constant temperature.
iii. Q = mLfusion; identify Lfusion
Here, Q is the heat, m is the mass and L is the latent heat of fusion.
Here, Q is the heat, m is the mass and L is the latent heat of vaporization.
The amount of heat required to convert the 1 kg solid into 1 kg liquid at constant temperature.
There can be three mole ratios that can be written involving three substances.It depends on the constant of your reactant to your product. It also depends on the asked mole ratio. But the maximum would be 3 mole ratios because you have 3 substances in your reaction.
I forgot what quantum means to be honest, the Bohr model In atomic physics, the Bohr model or Rutherford–Bohr model, presented by Niels Bohr and Ernest Rutherford in 1913, is a system consisting of a small, dense nucleus surrounded by orbiting electrons—similar to the structure of the Solar System, but with attraction provided by electrostatic forces in place of gravity. After the cubical model (1902), the plum pudding model (1904), the Saturnian model (1904), and the Rutherford model (1911) came the Rutherford–Bohr model or just Bohr model for short (1913). The improvement over the 1911 Rutherford model mainly concerned the new quantum physical interpretation.
Answer:
Waxy leaves protect the strangler fig from drying winds and sunlight that it is exposed to high in the canopy. Perhaps the most amazing part of this extraordinary tree is its flower. What we think of as the fruit is really a hollow, flower-bearing structure called a cyconia.
There are three types of tectonic plate boundary. These are divergent, convergent and transform plate boundaries. The divergent boundary is a fault where two plate move away from each other. Convergent is when two separate plates push each other. Lastly, transform plate boundary is when two plates slide past each other.