Answer:
The velocity in the pipe is 5.16m/s. The pipe diameter for the second fluid should be 6.6 mm.
Explanation:
Here the first think you have to consider is the definition of the Reynolds number (
) for flows in pipes. Rugly speaking, the Reynolds number is an adimensonal parameter to know if the fliud flow is in laminar or turbulent regime. The equation to calculate this number is:

where
is the density of the fluid,
is the viscosity, D is the pipe diameter and v is the velocity of the fluid.
Now, we know that Re=2100. So the velocity is:

For the second fluid, we want to keep the Re=2100 and v=5.16m/s. Therefore, using the equation of Reynolds number the diameter is:

Answer: 3/2mg
Explanation:
Express the moment equation about point B
MB = (M K)B
-mg cosθ (L/6) = m[α(L/6)](L/6) – (1/12mL^2 )α
α = 3g/2L cosθ
express the force equation along n and t axes.
Ft = m (aG)t
mg cosθ – Bt = m [(3g/2L cos) (L/6)]
Bt = ¾ mg cosθ
Fn = m (aG)n
Bn -mgsinθ = m[ω^2 (L/6)]
Bn =1/6 mω^2 L + mgsinθ
Calculate the angular velocity of the rod
ω = √(3g/L sinθ)
when θ = 90°, calculate the values of Bt and Bn
Bt =3/4 mg cos90°
= 0
Bn =1/6m (3g/L)(L) + mg sin (9o°)
= 3/2mg
Hence, the reactive force at A is,
FA = √(02 +(3/2mg)^2
= 3/2 mg
The magnitude of the reactive force exerted on it by pin B when θ = 90° is 3/2mg
Answer: the answer is a marine biologist
Explanation: the answer is marine biologist because Jylan likes to be in and out the water which means he would be perfect as marine biologist.
Answer:
Explanation:
A conservator with a(n) guardianship background and knowledge of foreign languages will have more job opportunities because they broaden the scope of work a conservator can undertake.