(a) Differentiate the position vector to get the velocity vector:
<em>r</em><em>(t)</em> = (3.00 m/s) <em>t</em> <em>i</em> - (4.00 m/s²) <em>t</em>² <em>j</em> + (2.00 m) <em>k</em>
<em>v</em><em>(t)</em> = d<em>r</em>/d<em>t</em> = (3.00 m/s) <em>i</em> - (8.00 m/s²) <em>t</em> <em>j</em>
<em></em>
(b) The velocity at <em>t</em> = 2.00 s is
<em>v</em> (2.00 s) = (3.00 m/s) <em>i</em> - (16.0 m/s) <em>j</em>
<em></em>
(c) Compute the electron's position at <em>t</em> = 2.00 s:
<em>r</em> (2.00 s) = (6.00 m) <em>i</em> - (16.0 m) <em>j</em> + (2.00 m) <em>k</em>
The electron's distance from the origin at <em>t</em> = 2.00 is the magnitude of this vector:
||<em>r</em> (2.00 s)|| = √((6.00 m)² + (-16.0 m)² + (2.00 m)²) = 2 √74 m ≈ 17.2 m
(d) In the <em>x</em>-<em>y</em> plane, the velocity vector at <em>t</em> = 2.00 s makes an angle <em>θ</em> with the positive <em>x</em>-axis such that
tan(<em>θ</em>) = (-16.0 m/s) / (3.00 m/s) ==> <em>θ</em> ≈ -79.4º
or an angle of about 360º + <em>θ</em> ≈ 281º in the counter-clockwise direction.
The energy achieved I think
Can i have more information?
Answer:
s = 23.72 m
v = 21.56 m/s²
Explanation:
given
time to reach the ground (t) = 2.2 second
we know that
a) s = u t + 0.5 g t²
u = 0 m/s
g = 9.8 m/s²
s = 0 + 0.5 × 9.8 × 2.2²
s = 23.72 m
b) impact velocity
v = √(2gh)
v = √(2× 9.8 × 23.72)
v = √464.912
v = 21.56 m/s²
The horizontal component of the velocity of the ball is calculated by multiplying the speed by the cosine of the given angle.
x-component of speed = (31 m/s)(cos 35°)
= 25.39 m/s
Thus, the horizontal velocity component of the ball is 25.39 m/s.