Answer: 0.01 m
Explanation: The formulae for capillarity rise or fall is given below as
h = (2T×cosθ)/rpg
Where θ = angle mercury made with glass = 50°
T = surface tension = 0.51 N/m
g = acceleration due gravity = 9.8 m/s²
r = radius of tube = 0.5mm = 0.0005m
p = density of mercury.
h = height of rise or fall
From the question, specific gravity of density = 13.3
Where specific gravity = density of mercury/ density of water, where density of water = 1000 kg/m³
Hence density of mercury = 13.3×1000 = 13,300 kg/m³.
By substituting parameters, we have that
h = 2×0.51×cos 50/0.0005×9.8×13,300
h = 0.6556/65.17
h = 0.01 m
Answer: C
Explanation: Side post terminals need to be removed to inspect them for corrosion.
Over tightening the terminal bolt can damage side post terminals.
The battery terminals and cable ends can corrode especially when the battery or car is not used for a long period of time. Corrosion limits a battery's lifespan and so should be prevented. To inspect the areas where corrosion occur on a side-post battery, you need to remove the terminals.
Also, it is true that over tightening the terminal bolt can damage the side post terminals. The covering on the battery can become twisted, and make the seals on the terminals leak.
Answer:Frequency = 3.525 Hertz
Explanation:In static equilibrium, kd =mg
Where k= effective spring constant of the spring.
mg= The weight of the car.
d= static deflection.
Therefore, w =SQRTg/d
w = SQRT 9.81/0.02
w= 22.15 rad/sec
Converting to Hertz unit for frequency
1 rad/s = 0.1591
22.15rad/s=?
22.15 × 0.1591= 3.525 hertz
Answer: The electromagnetic waves reach Earth, while the mechanical waves do not.
Explanation:
A) it is always changing direction