The correct answer would be B.
Answer:

Now when it will reach at point B then its normal force is just equal to ZERO


Explanation:
Since we need to cross both the loops so least speed at the bottom must be

also by energy conservation this is gained by initial potential energy


so we will have

now we have

here we have
R = 7.5 m
so we have


Now when it will reach at point B then its normal force is just equal to ZERO

now when it reach point C then the speed will be
![mgh - mg(2R_c) = \frac{1}{2]mv_c^2](https://tex.z-dn.net/?f=mgh%20-%20mg%282R_c%29%20%3D%20%5Cfrac%7B1%7D%7B2%5Dmv_c%5E2)


now normal force at point C is given as



Wind creat by rain, rain created by water, water created from pee
Answer:
actually I was just wondering what you are thinking
Answer:
a. 900 J
b. 0.383
Explanation:
According to the question, the given data is as follows
Horizontal force = 150 N
Packing crate = 40.0 kg
Distance = 6.00 m
Based on the above information
a. The work done by the 150-N force is


= 900 J
b. Now the coefficient of kinetic friction between the crate and surface is


= .383
We simply applied the above formulas so that each one part could calculate