<u>Given:</u>
Surface area at the narrow end, A1 = 5.00 cm2
Force applied at the narrow end, F1 = 81.0 N
Surface area at the wide end, A2 = 725 cm2
<u>To determine:</u>
Force F2 applied at the wide end
<u>Explanation:</u>
Use the relation
F1/A1 = F2/A2
F2 = F1*A2/A1 = 81.0 N * 725 cm2/5.00 cm2 = 11,745 N
Ans: (b)
The force applied at the wide end = 11,745 N
Answer:
oxygen is reduced to form water.
Explanation:
Cellular respiration
It is the set of reactions in which the ac. Pyruvic produced by glycolysis is split into CO2 and H2O and 36 ATP are produced. In eukaryotic cells breathing is performed in the mitochondria. It occurs in two stages:
- PIRUVATE OXIDATION
- AC CYCLE TRICARBOXYL
The "problem" with fermentation is that, by using organic molecules as terminal electron acceptors and having to dispose of the resulting product (lactic acid / ethanol) as waste, the potential energy of these compounds is lost.
The alternative solution is to use some non-organic molecule that can accept electrons and thus become a reduced molecule. Oxygen is perfect for this, because after receiving the electrons it combines with two protons, thus becoming the perfect liquid residue for the environment: H2O.
Answer:
32 mL
Explanation:
<em>A chemist must prepare 500.0mL of hydrobromic acid solution with a pH of 0.50 at 25°C. He will do this in three steps: Fill a 500.0mL volumetric flask about halfway with distilled water. Measure out a small volume of concentrated (5.0M) stock hydrobromic acid solution and add it to the flask. Fill the flask to the mark with distilled water. Calculate the volume of concentrated hydrobromic acid that the chemist must measure out in the second step. Round your answer to 2 significant digits.</em>
<em />
Step 1: Calculate [H⁺] of the dilute solution
pH = -log [H⁺]
[H⁺] = antilog -pH = antilog -0.50 = 0.32 M
Step 2: Calculate [HBr] of the dilute solution
HBr is a strong acid that dissociates according to the following equation.
HBr ⇒ H⁺ + Br⁻
The molar ratio of HBr to H⁺ is 1:1. The concentration of HBr is 1/1 × 0.32 M = 0.32 M.
Step 3: Calculate the volume of the concentrated HBr solution
We will use the dilution rule.
C₁ × V₁ = C₂ × V₂
V₁ = C₂ × V₂ / C₁
V₁ = 0.32 M × 500.0 mL / 5.0 M
V₁ = 32 mL