Answer:

Explanation:
Hello!
In this case, considering the given chemical reaction:

Thus, by applying the law of rate proportions, we can write:

Whereas the stoichiometric coefficients of reactants are negative due their disappearance and that of the product is positive due to its appearance. In such a way, when we relate the rate of disappearance of hydrogen gas to the rate of formation of hydrogen iodide, we obtain:

Best regards!
<u>Given:</u>
Concentration of Ba(OH)2 = 0.348 M
<u>To determine:</u>
pOH of the above solution
<u>Explanation:</u>
Based on the stoichiometry-
1 mole of Ba(OH)2 is composed of 1 mole of Ba2+ ion and 2 moles of OH- ion
Therefore, concentration of OH- ion = 2*0.348 = 0.696 M
pOH = -log[OH-] = - log[0.696] = 0.157
Ans: pOH of 0.348M Ba(OH)2 is 0.157
30kg think of it like this imagine you are moving to your college dorm would you have you carry the box if weights or will you carry your books instead
The balanced equation for the above reaction is as follows;
3NO₂ + H₂O --> 2HNO₃ + NO
stoichiometry of NO₂ to NO is 3:1
molar volume is where 1 mol of any gas occupies a volume of 22.4 L
volume of gas is directly proportional to number of moles of gas.
therefore stoichiometry can be applied for volume as well.
volume ratio of NO₂ to NO is 3:1
volume of NO₂ reacted - 854 L
therefore volume of NO formed - 854 L /3 = 285 L
volume of NO formed - 285 L
Answer:
The molar heat capacity at constant volume is 21.62 JK⁻¹mol⁻¹
The molar heat capacity at constant pressure is 29.93 JK⁻¹mol⁻¹
Explanation:
We can calculate the molar heat capacity at constant pressure from

Where
is the molar heat capacity at constant pressure
is the heat capacity at constant pressure
and
is the number of moles
Also
is given by

Hence,
becomes

From the question,
= 229.0 J
= 3.00 mol
= 2.55 K
Hence,
becomes

29.93 JK⁻¹mol⁻¹
This is the molar heat capacity at constant pressure
For, the molar heat capacity at constant volume,
From the formula

Where
is the molar heat capacity at constant volume
and
is the gas constant (
= 8.314 JK⁻¹mol⁻¹)
Then,


21.62 JK⁻¹mol⁻¹
This is the molar heat capacity at constant volume