Answer:
3.33 M
Explanation:
It seems your question is incomplete, however, that same fragment has been found somewhere else in the web:
" <em>A chemist prepares a solution of silver nitrate (AgNO3) by measuring out 85.g of silver nitrate into a 150.mL volumetric flask and filling the flask to the mark with water.</em>
<em>Calculate the concentration in mol/L of the chemist's silver nitrate solution. Be sure your answer has the correct number of significant digits.</em> "
In this case, first we <u>calculate the moles of AgNO₃</u>, using its molecular weight:
- 85.0 g AgNO₃ ÷ 169.87 g/mol = 0.500 mol AgNO₃
Then we<u> convert the 150 mL of the volumetric flask into L</u>:
Finally we <u>divide the moles by the volume</u>:
- 0.500 mol AgNO₃ / 0.150 L = 3.33 M
To find them you would have numbers of the elements in percentage or grams then you divide them by their molar mass to get their moles. From there you divide by the smallest number. Round it to two or one sig fig. If you have a number that is for ex. 2.5 you multiply it by 2 to make it whole as well the other whole numbers. Then to find the molecular formula the problem must give you another molar mass and using your empirical formula convert it to its molar mass then you divide them, larger number over smaller number. You should get a number round it to 1 sig fig. Now you use that number and multiply the subscripts on the empirical formula to get the molecular formula.
Answer:
Ionic Bonding: The formation of an Ionic bond is the result of the transfer of one or more electrons from a metal onto a non-metal.
Covalent Bonding: Bonding between non-metals consists of two electrons shared between two atoms.
Explanation:
A sodium ion symbol is written as Na^+.