Answer:
B
[(0.75)^3(0.25)]÷[(0.50)^2(0.75)]
Explanation:
toppr dot com
Answer:
Explanation:
Hello,
In this case, we use the Avogadro's number to compute the molecules of C2F4 whose molar mass is 100 g/mol contained in a 485-kg sample as shown below:
Best regards,
Well not calculus because that has nothing, well mostly nothing to do with balancing chemical equation, so B or C. Now for me personally B is way faster, though C is sometimes faster if you get lucky the way to solve it is B
Answer:
74.81 grams of calcium carbonate are produced from 79.3 g of sodium carbonate.
Explanation:
The balanced reaction is:
Na₂CO₃ + Ca(NO₃)₂ ⟶ CaCO₃ + 2 NaNO₃
By reaction stoichiometry (that is, the relationship between the amount of reagents and products in a chemical reaction), the following amounts of each compound participate in the reaction:
- Na₂CO₃: 1 mole
- Ca(NO₃)₂: 1 mole
- CaCO₃: 1 mole
- NaNO₃: 2 mole
Being the molar mass of the compounds:
- Na₂CO₃: 106 g/mole
- Ca(NO₃)₂: 164 g/mole
- CaCO₃: 100 g/mole
- NaNO₃: 85 g/mole
then by stoichiometry the following quantities of mass participate in the reaction:
- Na₂CO₃: 1 mole* 106 g/mole= 106 g
- Ca(NO₃)₂: 1 mole* 164 g/mole= 164 g
- CaCO₃: 1 mole* 100 g/mole= 100 g
- NaNO₃: 2 mole* 85 g/mole= 170 g
You can apply the following rule of three: if by stoichiometry 106 grams of Na₂CO₃ produce 100 grams of CaCO₃, 79.3 grams of Na₂CO₃ produce how much mass of CaCO₃?
mass of CaCO₃= 74.81 grams
<u><em>74.81 grams of calcium carbonate are produced from 79.3 g of sodium carbonate.</em></u>
(If this is correct, can I have Brainlist?)
Answer:
D) anomalous volcanoes such as those in Hawaii