We have: Energy(E) = Planck's constant(h) × Frequency(∨)
Here, Planck's constant(h) = 6.626 × 10⁻³⁴ J/s
Frequency (∨) = 3.16 × 10¹² /s
Substitute the values into the expression:
E = (6.626 × 10⁻³⁴)(3.16 × 10¹²) J
E = 2.093 × 10⁻²¹ Joules
In short, Your Final answer would be 2.093 × 10⁻²¹ J
Hope this helps!
Ng seismic and translational waves we get the law of michio kaku.
C.) <span>The total mass of an object can be assumed to be focused at one point, which is called its center of "Mass"
Hope this helps!</span>
A force of 43.8 N is required to stretch the spring a distance of 15.5 cm = 0.155 m, so the spring constant <em>k</em> is
43.8 N = <em>k</em> (0.155 m) ==> <em>k</em> = (43.8 N) / (0.155 m) ≈ 283 N/m
The total work done on the spring to stretch it to 15.5 cm from equilibrium is
1/2 (283 N/m) (0.155 m)² ≈ 3.39 J
The total work needed to stretch the spring to 15.5 cm + 10.4 cm = 25.9 cm = 0.259 m from equilibrium would be
1/2 (283 N/m) (0.259 m)² ≈ 9.48 J
Then the additional work needed to stretch the spring 10.4 cm further is the difference, about 6.08 J.