Answer and Explanation:
The coefficient of determination also called "goodness of fit" or R-squared(R²) is used in statistical measurements to understand the relationship between two variables such that changes in one variable affects the other. The level of relationship or the degree to which one affects the other is measured by 0 to 1 whereby 0 means no relationship at all and 1 means one totally affects the other while figures in between such 0.40 would mean one variable affects 40% of the other variable.
In making a decision as an engineer while using the coefficient of determination, one would try to understand the relationship between variables under consideration and make decisions based on figures obtained from calculating coefficient of determination. In other words when there is a 0 coefficient then there is no relationship between variables and an engineer would make his decisions with this in mind and vice versa.
Answer:

Explanation:
The water enters to the pump as saturated liquid and equation is modelled after the First Law of Thermodynamics:




The boiler heats the water to the state of saturated vapor, whose specific enthalpy is:

The rate of heat transfer in the boiler is:


Answer:
simple projects bovonhztisgx
Answer:
The outer diameter of the spacers that yields the most economical and safe design is 25.03 mm
Explanation:
For steel bolt
Stress = 210 MPa or 210 N/mm2
Pressure = Stress* Area
Pbolt = 210 N/mm2 * 16^2 *(pi)/4
Pbolt = 210 N/mm2 * 200.96 mm^2 = 42201.6 N
For Brass spacer
Pressure = 42201.6 N
Area of Brass spacer = Pressure/Stress
Area of Brass spacer = 42201.6 N/145 N/mm^2 = 291.044 mm^2
Area of Brass spacer = (pi) (d^2 - 16^2)/4 = 291.044 mm^2
d^2 - 16^2 = 291.044 mm^2* 4/(pi) = 370.758
d^2 = 370.758 + 16^2
d^2 = 626.758
d = 25.03 mm
The outer diameter of the spacers that yields the most economical and safe design is 25.03 mm
Answer:
a) 8kW
b) $128
Explanation:
Given the coefficient of performance of the heat pump cycle to be 2.5
Energy delivered by the heat pump = 20kW
a) net power required to operate the heat pump = Energy delivered / coefficient of performance
Net power required = 20/2.5
= 8kW
b) Given the cost of electricity is $0.08 for 1kWhour
Since net power required to operate heat pump = 8kW
If the heat pump operate for 200hours, total power required for a month = 8kW×200hours = 1600kWhour
since 1kWh of electricity costs $0.08, cost of electricity used in a month when the pump operates for 200hour will be 1600kWh×$0.08 which is equivalent to $128