Answer:
molar composition for liquid
xb= 0.24
xt=0.76
molar composition for vapor
yb=0.51
yt=0.49
Explanation:
For an ideal solution we can use the Raoult law.
Raoult law: in an ideal liquid solution, the vapor pressure for every component in the solution (partial pressure) is equal to the vapor pressure of every pure component multiple by its molar fraction.
For toluene and benzene would be:

Where:
is partial pressure for benzene in the liquid
is benzene molar fraction in the liquid
vapor pressure for pure benzene.
The total pressure in the solution is:
And
Working on the equation for total pressure we have:
Since
We know P and both vapor pressures so we can clear
from the equation.
So
To get the mole fraction for the vapor we know that in the equilibrium:
So
Something that we can see in these compositions is that the liquid is richer in the less volatile compound (toluene) and the vapor in the more volatile compound (benzene). If we take away this vapor from the solution, the solution is going to reach a new state of equilibrium, where more vapor will be produced. This vapor will have a higher molar fraction of the more volatile compound. If we do this a lot of times, we can get a vapor that is almost pure in the more volatile compound. This is principle used in the fractional distillation.
the correct answer is.. ill tell you when i search it up gimme 2 seconds
Answer : The electron configurations consistent with this fact is, (b) [Kr] 4d¹⁰
Explanation :
Electronic configuration : It is defined as the representation of electrons around the nucleus of an atom.
Number of electrons in an atom are determined by the electronic configuration.
Paramagnetic compounds : They have unpaired electrons.
Diamagnetic compounds : They have no unpaired electrons that means all are paired.
The given electron configurations of Palladium are:
(a) [Kr] 5s²4d⁸
In this, there are 2 electrons in 's' orbital and 8 electrons in 'd' orbital. From the partial orbital diagrams we conclude that 's' orbital are paired but 'd' orbital are not paired. So, this configuration shows paramagnetic.
(b) [Kr] 4d¹⁰
In this, there are 10 electrons in 'd' orbital. From the partial orbital diagrams we conclude that electrons in 'd' orbital are paired. So, this configuration shows diamagnetic.
(c) [Kr] 5s¹4d⁹
In this, there are 1 electron in 's' orbital and 9 electrons in 'd' orbital. From the partial orbital diagrams we conclude that 's' orbital and 'd' orbital are not paired. So, this configuration shows paramagnetic.
Answer: The name given to
is Gallium (III) sulfate.
Explanation: This is an ionic compound because in aqueous solution it dissociates into its respective ions.
Naming of Ionic compounds.
- Name the cation first and then write its oxidation number in roman numerical.
- Then name the anion or polyatomic ions without writing any prefix of the number of atoms present in it.
- The name of the anion should have a suffix '-ide' like for chlorine, the name will be chloride etc..
- For polyatomic ions, the suffix used will be '-ate' like for
the name will be sulfate etc..
Name of the given ionic compound is Gallium (III) Sulfate.
True, Robert Hooke was the first person to discover cells inside a cork.