Colligative properties depend on the amount of solute dissolved in a solvent. These set of properties do not depend on the type of species present. These properties include freezing point depression, boiling point elevation, osmotic pressure and vapor pressure lowering.
Answer: (Structure attached).
Explanation:
This type of reaction is an aromatic electrophilic substitution. The overall reaction is the replacement of a proton (H +) with an electrophile (E +) in the aromatic ring.
The aromatic ring in p-fluoroanisole has two sustituents, an <u>halogen</u> and a <u>methoxy group</u>, which are <em>ortho-para</em> directing substituents.
Aryl sulfonic acids are easily synthesized by an electrophilic substitution reaction aromatic using <u>sulfur trioxide as an electrophile</u> (very reactive).
The reaction occurs in three steps:
- The attack on the electrophile forms the sigma complex.
- The loss of a proton regenerates an aromatic ring.
- The sulfonate group can be protonated in the presence of a strong acid (H₂SO₄).
Normally, a mixture of <em>ortho-para</em> substituted products would be obtained. However, since both <em>para</em> positions are occupied, only the <em>ortho </em>substituted product is obtained here.
Answer: Air, sea water, and carbonation dissolved in soda are all examples of homogeneous mixtures, or solutions. Hope this helps :)
Question #1
Potasium hydroxide (known)
volume used is 25 ml
Molarity (concentration) = 0.150 M
Moles of KOH used
0.150 × 25/1000 = 0.00375 moles
Sulfuric acid (H2SO4)
volume used = 15.0 ml
unknown concentration
The equation for the reaction is
2KOH (aq)+ H2SO4(aq) = K2SO4(aq) + 2H2O(l)
Thus, the Mole ratio of KOH to H2SO4 is 2:1
Therefore, moles of H2SO4 used will be;
0.00375 × 1/2 = 0.001875 moles
Acid (sulfuric acid) concentration
0.001875 moles × 1000/15
= 0.125 M
Question #2
Hydrogen bromide (acid)
Volume used = 30 ml
Concentration is 0.250 M
Moles of HBr used;
0.25 × 30/1000
= 0.0075 moles
Sodium Hydroxide (base)
Volume used 20 ml
Concentration (unknown)
The equation for the reaction is
NaOH + HBr = NaBr + H2O
The mole ratio of NaOH : HBr is 1 : 1
Therefore, moles of NaOH used;
= 0.0075 moles
NaOH concentration will be
= 0.0075 moles × 1000/20
= 0.375 M
In oil and gas industry:
When crude oil get extracted from well, salt water and some other stuff needs to be removed before oil can be sued in the car